Learn R Programming

metaSEM (version 0.9.4)

Hox02: Simulated Effect Sizes Reported by Hox (2002)

Description

Twenty stimulated studies on standardized mean difference and one continuous study characteristic reported by Hox (2002).

Usage

data(Hox02)

Arguments

source

Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah, N.J.: Lawrence Erlbaum Associates.

Details

The variables are: [object Object],[object Object],[object Object],[object Object]

References

Cheung, M. W.-L. (2008). A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling. Psychological Methods, 13, 182-202.

Examples

Run this code
data(Hox02)

#### ML estimation method
## Random-effects meta-analysis
summary( meta(y=yi, v=vi, data=Hox02, I2=c("I2q", "I2hm"), intervals.type="LB") ) 

## Fixed-effects meta-analysis
summary( meta(y=yi, v=vi, data=Hox02, RE.constraints=0,
              model.name="Fixed effects model") )

## Mixed-effects meta-analysis with "weeks" as a predictor
## Request likelihood-based CI
summary( meta(y=yi, v=vi, x=weeks, data=Hox02, intervals.type="LB",
              model.name="Mixed effects meta analysis with LB CI") )

#### REML estimation method
## Random-effects meta-analysis with REML
summary( VarComp <- reml(y=yi, v=vi, data=Hox02) )

## Extract the variance component
VarComp_REML <- matrix( coef(VarComp), ncol=1, nrow=1 )

## Meta-analysis by treating the variance component as fixed
summary( meta(y=yi, v=vi, data=Hox02, RE.constraints=VarComp_REML) )


## Mixed-effects meta-analysis with "weeks" as a predictor
## Request likelihood-based CI
summary( reml(y=yi, v=vi, x=weeks, intervals.type="LB",
              data=Hox02, model.name="REML with LB CI") )

Run the code above in your browser using DataLab