reml(y, v, x, data, RE.constraints = NULL, RE.startvalues = 0.1,
RE.lbound = 1e-10, intervals.type = c("z", "LB"),
model.name="Variance component with REML",
suppressWarnings = TRUE, silent = TRUE, run = TRUE, ...)as.matrix(). The default is that all
covariance/variance components are free. The format of this maNAz (default if missing) or
LB. If it is z, it calculates the 95% Wald confidence
intervals (CIs) based on the z statistic. If it is LB, it
calculates the 95% likelihood-based CIs on the
parametmxModel.TRUE, warnings are
suppressed. Argument to be passed to mxRun.mxRunFALSE, only return the mx model without running the analysis.mxRunreml with a list ofmatch.callTRUEmxRunx. The last $N$ redundant rows of $M$ is removed where $N$ is the rank of $X$. After pre-multiplying by $M$ on y, the parameters of fixed-effects are removed from the model. Thus, only the parameters of random-effects are estimated. An alternative but equivalent approach is to minimize the
-2*log-likelihood function: $$\log(\det|V+T^2|)+\log(\det|X'(V+T^2)^{-1}X|)+(y-X\hat{\alpha})'(V+T^2)^{-1}(y-X\hat{\alpha})$$
where $V$ is the known conditional sampling covariance matrix
of $y$, $T^2$ is the variance component of the random
effects, and $\hat{\alpha}=(X'(V+T^2)^{-1}X)^{-1}
X'(V+T^2)^{-1}y$. reml()
minimizes the above likelihood function to obtain the parameter estimates.
Mehta, P. D., & Neale, M. C. (2005). People Are Variables Too: Multilevel Structural Equations Modeling. Psychological Methods, 10(3), 259-284.
Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York: Wiley. Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators in the random-effects model. Journal of Educational and Behavioral Statistics, 30(3), 261-293.
meta, reml3, Hox02, Berkey98