reml3(y, v, cluster, x, data, RE2.startvalue=0.1, RE2.lbound=1e-10,
RE3.startvalue=RE2.startvalue, RE3.lbound=RE2.lbound, RE.equal=FALSE,
intervals.type=c("z", "LB"), model.name="Variance component with REML",
suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)z (default if missing) or
LB. If it is z, it calculates the 95% Wald confidence
intervals (CIs) based on the z statistic. If it is LB, it
calculates the 95% likelihood-based CIs on the
parametmxModel.TRUE, warnings are
suppressed. Argument to be passed to mxRun.mxRunFALSE, only return the mx model without running the analysis.mxRunreml with a list ofmatch.callmxRunx. The last $N$ redundant rows of $M$ is removed where $N$ is the rank of $X$. After pre-multiplying by $M$ on y, the parameters of fixed-effects are removed from the model. Thus, only the parameters of random-effects are estimated.An alternative but equivalent approach is to minimize the
-2*log-likelihood function: $$\log(\det|V+T^2|)+\log(\det|X'(V+T^2)^{-1}X|)+(y-X\hat{\alpha})'(V+T^2)^{-1}(y-X\hat{\alpha})$$
where $V$ is the known conditional sampling covariance matrix
of $y$, $T^2$ is the variance component combining
level-2 and level-3 random effects, and $\hat{\alpha}=(X'(V+T^2)^{-1}X)^{-1}
X'(V+T^2)^{-1}y$. reml()
minimizes the above likelihood function to obtain the parameter estimates.
Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19, 211-229.
Mehta, P. D., & Neale, M. C. (2005). People Are Variables Too: Multilevel Structural Equations Modeling. Psychological Methods, 10(3), 259-284.
Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York: Wiley.
meta3, reml, Cooper03, Bornmann07