tssem1FEM() and
tssem1REM() use fixed- and random-effects models,
respectively. tssem1() is a wrapper of these functions.tssem1(my.df, n, method=c("FEM","REM"), cor.analysis = TRUE, cluster=NULL,
RE.type=c("Symm", "Diag", "Zero", "User"), RE.startvalues=0.1,
RE.lbound=1e-10, RE.constraints=NULL, I2="I2q",
acov=c("individual", "unweighted", "weighted"),
model.name=NULL, suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)
tssem1FEM(my.df, n, cor.analysis=TRUE, model.name=NULL,
cluster=NULL, suppressWarnings=TRUE, silent=TRUE, run=TRUE, ...)
tssem1REM(my.df, n, cor.analysis=TRUE, RE.type=c("Symm", "Diag", "Zero","User"),
RE.startvalues=0.1, RE.lbound=1e-10, RE.constraints=NULL,
I2="I2q", acov=c("individual", "unweighted", "weighted"),
model.name=NULL, suppressWarnings=TRUE,
silent=TRUE, run=TRUE, ...)"FEM" (default if missing) or "REM".
If it is "FEM", fixed-effects meta-analysis will be applied. If it is "REM",
random-effects meta-analysis will be applied.method="REM"."Symm", "Diag",
"Zero" or "User". If it is "Symm" (default if missing), a
symmetric matrix is used for the random effects on the covariances
among the correlation (or covariance) method="FEM".method="FEM".as.matrix(). The default is that all
covariance/varian"I2q", "I2hm" and
"I2am". They represent the I2 calculated by using a
typical within-study sampling variance from the Q statistic, the
harmonic mean and the arithmatic mean of theindividual (the default), the sampling variance covariance
matrices are calculated based on individual correlation/covariance
matrix. If it is either unweighted or weighted, the average
correlation/covarimxModel.TRUE, warnings are
suppressed. Argument to be passed to mxRun.mxRunFALSE, only return the mx model without running the analysis.mxRuntssem1FEM for fixed-effects TSSEM,
an object of class tssem1FEM.cluster for fixed-effects TSSEM
with cluster argument, or an object of class tssem1REM
for random-effects TSSEM.Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling, 20, 429-454.
Cheung, M. W.-L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.
Cheung, M. W.-L., & Chan, W. (2009). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling, 16, 28-53.
wls, Cheung09,
Becker92, Digman97, issp89, issp05