## Not run:
# data(Becker94)
#
# #### Fixed-effects model
# ## First stage analysis
# fixed1 <- tssem1(Becker94$data, Becker94$n, method="FEM")
# summary(fixed1)
#
# ## Prepare a regression model using create.mxMatrix()
# A1 <- create.mxMatrix(c(0,0,0,"0.2*Spatial2Aptitude",
# 0,0,"0.2*Verbal2Aptitude",0,0), type="Full",
# ncol=3, nrow=3, name="A1")
# S1 <-
# create.mxMatrix(c("0.2*ErrorVarAptitude",0,0,1,"0.2*CorBetweenSpatialVerbal",1),
# type="Symm", name="S1")
#
# ## An alternative method to create a regression model using mxMatrix()
# # A1 <- mxMatrix("Full", ncol=3, nrow=3, value=0, free=c(FALSE,FALSE,FALSE,TRUE,FALSE,
# # FALSE,TRUE,FALSE,FALSE),
# # label=c(NA,NA,NA,"Spatial2Aptitude",NA,NA,"Verbal2Aptitude",NA,NA),
# # name="A1")
# # S1 <- mxMatrix("Symm", ncol=3, nrow=3, value=c(0.5,0,0,1,0.2,1),
# # free=c(TRUE,FALSE,FALSE,FALSE,TRUE,FALSE),
# # label=c("ErrorVarAptitude",NA,NA,NA,"CorBetweenSpatialVerbal",NA),
# # name="S1")
#
# ## Second stage analysis
# fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, intervals.type="LB")
# summary(fixed2)
#
#
# #### Fixed-effects model: with gender as cluster
# ## First stage analysis
# cluster1 <- tssem1(Becker94$data, Becker94$n, method="FEM", cluster=Becker94$gender)
# summary(cluster1)
#
# ## Second stage analysis
# cluster2 <- tssem2(cluster1, Amatrix=A1, Smatrix=S1, intervals.type="LB")
# summary(cluster2)
#
#
# #### Conventional fixed-effects GLS approach
# ## First stage analysis
# ## No random effects
# ## Replicate Becker's (1992) analysis using 4 studies only
# gls1 <- tssem1(Becker92$data[1:4], Becker92$n[1:4], method="REM", RE.type="Zero",
# model.name="Fixed effects GLS Stage 1")
# summary(gls1)
#
# ## Fixed-effects GLS model: Second stage analysis
# gls2 <- tssem2(gls1, Amatrix=A1, Smatrix=S1, intervals.type="LB",
# model.name="Fixed effects GLS Stage 2")
# summary(gls2)
# ## End(Not run)
Run the code above in your browser using DataLab