## Not run:
# data(Bornmann07)
#
# #### ML estimation method
# ## No predictor
# summary( meta3(y=logOR, v=v, cluster=Cluster, data=Bornmann07) )
#
# ## Type as a predictor
# ## Grant: 0
# ## Fellowship: 1
# summary( meta3(y=logOR, v=v, x=(as.numeric(Type)-1),
# cluster=Cluster, data=Bornmann07) )
#
# ## Centered Year as a predictor
# summary( meta3(y=logOR, v=v, x=scale(Year, scale=FALSE),
# cluster=Cluster, data=Bornmann07) )
#
# #### REML estimation method
# ## No predictor
# summary( reml3(y=logOR, v=v, cluster=Cluster, data=Bornmann07) )
#
# ## Type as a predictor
# ## Grants: 0
# ## Fellowship: 1
# summary( reml3(y=logOR, v=v, x=(as.numeric(Type)-1),
# cluster=Cluster, data=Bornmann07) )
#
# ## Centered Year as a predictor
# summary( reml3(y=logOR, v=v, x=scale(Year, scale=FALSE),
# cluster=Cluster, data=Bornmann07) )
#
# ## Handling missing covariates with FIML
# ## MCAR
# ## Set seed for replication
# set.seed(1000000)
#
# ## Copy Bornmann07 to my.df
# my.df <- Bornmann07
# ## "Fellowship": 1; "Grant": 0
# my.df$Type_MCAR <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0)
#
# ## Create 17 out of 66 missingness with MCAR
# my.df$Type_MCAR[sample(1:66, 17)] <- NA
# summary(meta3X(y=logOR, v=v, cluster=Cluster, x2=Type_MCAR, data=my.df))
#
# ## MAR
# Type_MAR <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0)
#
# ## Create 27 out of 66 missingness with MAR for cases Year<1996
# index_MAR <- ifelse(Bornmann07$Year<1996, yes=TRUE, no=FALSE)
# Type_MAR[index_MAR] <- NA
#
# ## Include auxiliary variable
# summary(meta3X(y=logOR, v=v, cluster=Cluster, x2=Type_MAR, av2=Year, data=my.df))
# ## End(Not run)
Run the code above in your browser using DataLab