Learn R Programming

metaSEM (version 0.9.8)

Cheung09: A Data Set from TSSEM User's Guide Version 1.11 by Cheung (2009)

Description

Four studies were selected from the data set used by Cheung and Chan (2005; 2009). Some variables were randomly deleted to illustrate the analysis with missing data.

Usage

data(Cheung09)

Arguments

Source

Cheung, M. W.-L. (2009). TSSEM: A LISREL syntax generator for two-stage structural equation modeling (Version 1.11) [Computer software]. Retrieved from http://courses.nus.edu.sg/course/psycwlm/internet/tssem.zip.

Details

A list of data with the following structure:
data
A list of 4 studies of correlation matrices

n
A vector of sample sizes

References

Cheung, M. W.-L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.

Cheung, M. W.-L., & Chan, W. (2009). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling, 16, 28-53.

Examples

Run this code
## Not run: 
# data(Cheung09)
# 
# #### Fixed-effects model: Stage 1 analysis
# fixed1 <- tssem1(Cheung09$data, Cheung09$n, method="FEM")
# summary(fixed1)
#   
# ## Prepare a model implied matrix
# ## Factor correlation matrix
# Phi <- create.mxMatrix( c("0.3*corf2f1","0.3*corf3f1","0.3*corf3f2"),
#                         type="Stand", as.mxMatrix=FALSE )
# ## Error variances
# Psi <- create.mxMatrix( paste("0.2*e", 1:9, sep=""), type="Diag",
#                         as.mxMatrix=FALSE )
# 
# ## Create Smatrix
# S1 <- bdiagMat(list(Psi, Phi))
# ## dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c(paste("x",1:9,sep=""),
# ##                                             paste("f",1:3,sep=""))
# ## S1
# S1 <- as.mxMatrix(S1)
# 
# ## Factor loadings
# Lambda <- create.mxMatrix( c(".3*f1x1",".3*f1x2",".3*f1x3",rep(0,9),
#                              ".3*f2x4",".3*f2x5",".3*f2x6",".3*f2x7",
#                              rep(0,9),".3*f3x8",".3*f3x9"), type="Full",
#                              ncol=3, nrow=9, as.mxMatrix=FALSE )
# Zero1 <- matrix(0, nrow=9, ncol=9)
# Zero2 <- matrix(0, nrow=3, ncol=12)
# 
# ## Create Amatrix
# A1 <- rbind( cbind(Zero1, Lambda),
#              Zero2 )
# ## dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c(paste("x",1:9,sep=""),
# ##                                             paste("f",1:3,sep=""))
# ## A1
# A1 <- as.mxMatrix(A1)
# 
# ## Create Fmatrix
# F1 <- create.Fmatrix(c(rep(1,9), rep(0,3)))
#   
# #### Fixed-effects model: Stage 2 analysis
# fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,
#                  intervals.type="LB")
# summary(fixed2)
# ## End(Not run)

Run the code above in your browser using DataLab