## Not run:
# data(Cooper03)
#
# #### ML estimation method
# ## No predictor
# summary( model1 <- meta3(y=y, v=v, cluster=District, data=Cooper03) )
#
# ## Show all heterogeneity indices and their 95% confidence intervals
# summary( meta3(y=y, v=v, cluster=District, data=Cooper03,
# intervals.type="LB", I2=c("I2q", "I2hm", "I2am", "ICC")) )
#
# ## Year as a predictor
# summary( meta3(y=y, v=v, cluster=District, x=scale(Year, scale=FALSE),
# data=Cooper03, model.name="Year as a predictor") )
#
# ## Equality of level-2 and level-3 heterogeneity
# summary( model2 <- meta3(y=y, v=v, cluster=District, data=Cooper03,
# RE2.constraints="0.2*EqTau2",
# RE3.constraints="0.2*EqTau2",
# model.name="Equal Tau2") )
#
# ## Compare model2 vs. model1
# anova(model1, model2)
#
# #### REML estimation method
# ## No predictor
# summary( reml3(y=y, v=v, cluster=District, data=Cooper03) )
#
# ## Level-2 and level-3 variances are constrained equally
# summary( reml3(y=y, v=v, cluster=District, data=Cooper03,
# RE.equal=TRUE, model.name="Equal Tau2") )
#
# ## Year as a predictor
# summary( reml3(y=y, v=v, cluster=District, x=scale(Year, scale=FALSE),
# data=Cooper03, intervals.type="LB") )
#
# ## Handling missing covariates with FIML
# ## Create 20/56 MCAR data in Year
# set.seed(10000)
# Year_MCAR <- Cooper03$Year
# Year_MCAR[sample(56, 20)] <- NA
# summary( meta3X(y=y, v=v, cluster=District, x2=scale(Year_MCAR, scale=FALSE),
# data=Cooper03, model.name="NA in Year_MCAR") )
# ## End(Not run)
Run the code above in your browser using DataLab