Learn R Programming

metaSEM (version 0.9.8)

Hunter83: Fourteen Studies of Correlation Matrices reported by Hunter (1983)

Description

This data set includes fourteen studies of Correlation Matrices reported by Hunter (1983)

Usage

data(Hunter83)

Arguments

Source

Hunter, J. E. (1983). A causal analysis of cognitive ability, job knowledge, job performance, and supervisor ratings. In F. Landy, S. Zedeck, & J. Cleveland (Eds.), Performance Measurement and Theory (pp. 257-266). Hillsdale, NJ: Erlbaum.

Details

A list of data with the following structure:
data
A list of 14 studies of correlation matrices. The variables are Ability, Job knowledge, Work sample and Supervisor rating

n
A vector of sample sizes

Examples

Run this code
## Not run: 
# data(Hunter83)
# 
# #### Fixed-effects model
# ## First stage analysis
# fixed1 <- tssem1(Hunter83$data, Hunter83$n, method="FEM",
#                  model.name="TSSEM1 fixed effects model")
# summary(fixed1)
# 
# #### Second stage analysis
# ## Model without direct effect from Ability to Supervisor
# A1 <- create.mxMatrix(c(0,"0.1*A2J","0.1*A2W",0,0,0,"0.1*J2W","0.1*J2S",
#                         0,0,0,"0.1*W2S",0,0,0,0),
#                         type="Full", ncol=4, nrow=4, as.mxMatrix=FALSE)
# 
# ## This step is not necessary but it is useful for inspecting the model.
# dimnames(A1)[[1]] <- dimnames(A1)[[2]] <- c("Ability","Job","Work","Supervisor") 
# A1
# 
# S1 <- create.mxMatrix(c(1,"0.1*Var_e_J", "0.1*Var_e_W", "0.1*Var_e_S"),
#                       type="Diag", as.mxMatrix=FALSE)
# dimnames(S1)[[1]] <- dimnames(S1)[[2]] <- c("Ability","Job","Work","Supervisor") 
# S1
# 
# ################################################################################
# ## Alternative model specification in lavaan model syntax
# model <- "## Regression paths
#           Job~A2J*Ability
#           Work~A2W*Ability + J2W*Job
#           Supervisor~J2S*Job + W2S*Work
#           ## Fix the variance of Ability
#           Ability~~1*Ability
#           ## Label the error variances of dependent variables
#           Job~~Var_e_J*Job
#           Work~~Var_e_W*Work
#           Supervisor~~Var_e_S*Supervisor"
# 
# RAM <- lavaan2RAM(model, obs.variables=c("Ability","Job","Work","Supervisor"))
# RAM
# 
# A1 <- RAM$A
# S1 <- RAM$S
# ################################################################################
# 
# ## diag.constraints=TRUE is required as there are mediators  
# fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, intervals.type="LB",
#                  diag.constraints=FALSE,
#                  model.name="TSSEM2 fixed effects model")
# summary(fixed2)
# 
# ## Coefficients
# coef(fixed2)
# 
# ## VCOV based on parametric bootstrap
# vcov(fixed2)
# 
# #### Random-effects model with diagonal elements only
# ## First stage analysis
# random1 <- tssem1(Hunter83$data, Hunter83$n, method="REM", RE.type="Diag", 
#                   model.name="TSSEM1 random effects model")
# summary(random1)
# 
# ## Second stage analysis
# ## Model without direct effect from Ability to Supervisor
# 
# ## diag.constraints=TRUE is required as there are mediators 
# random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, intervals.type="LB",
#                   diag.constraints=FALSE,
#                   mx.algebras=
#                   list( ind=mxAlgebra(A2J*J2S+A2J*J2W*W2S+A2W*W2S, name="ind") ),
#                   model.name="TSSEM2 random effects model")
# summary(random2)
# 
# ## Load the library
# library("semPlot")
# 
# ## Convert the model to semPlotModel object
# my.plot <- meta2semPlot(random2)
# 
# ## Plot the model with labels
# semPaths(my.plot, whatLabels="path", nCharEdges=10, nCharNodes=10, color="red")
# 
# ## Plot the parameter estimates
# semPaths(my.plot, whatLabels="est", nCharNodes=10, color="green")
# ## End(Not run)

Run the code above in your browser using DataLab