meta objects.
"plot"(x, effect.sizes, add.margin = 0.1, interval = 0.95,
main= "Effect Sizes and their Confidence Ellipses",
axis.labels= paste("Effect size ", effect.sizes, sep = ""),
study.col = "black", study.pch = 19, study.min.cex = 0.8,
study.weight.plot = FALSE, study.ellipse.plot = TRUE,
study.ellipse.col = "black", study.ellipse.lty = 2,
study.ellipse.lwd = 0.5,
estimate.col = "blue", estimate.pch = 18, estimate.cex = 2,
estimate.ellipse.plot = TRUE, estimate.ellipse.col = "red",
estimate.ellipse.lty = 1, estimate.ellipse.lwd = 2,
randeff.ellipse.plot = TRUE, randeff.ellipse.col = "green",
randeff.ellipse.lty = 1, randeff.ellipse.lwd = 2,
univariate.plot = TRUE, univariate.lines.col = "gray",
univariate.lines.lty = 3,
univariate.lines.lwd = 1, univariate.polygon.width = 0.02,
univariate.polygon.col = "red", univariate.arrows.col = "green",
univariate.arrows.lwd = 2,
diag.panel = FALSE, xlim=NULL, ylim=NULL, ...)meta.
effect.sizes=c(1,2). If it is missing, all effect sizes will be plotted in a
pairwise way.
col in par.
pch in points.
cex in par.
TRUE, the ploting size of individual
studies (cex) will be proportional to one over the square root of the
determinant of the sampling covariance matrix of the study.
TRUE, the confidence
ellipses of individual studies are plotted.
col in par.
lty in par.
lwd in par.
col in par.
pch in points.
cex in par.
TRUE, the confidence
ellipse of the estimated effect sizes will be plotted.
col in par.
lty in par.
lwd in par.
TRUE, the confidence
ellipses of the random effects will be plotted.
col in par.
lty in par.
lwd in par.
TRUE, the estimated univariate effect
sizes will be plotted.
col in par.
lty in par.
lwd in par.
TRUE, diagonal panels will be
created. They can then be used for forrest plots for univariate meta-analysis.
## Not run:
# ## Multivariate meta-analysis
# x <- meta(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL), data=Berkey98)
# plot(x)
#
# ## Plot individual studies proportional to the weights
# plot(x, study.weight.plot=TRUE)
#
# ## Include forest plot from the metafor package
# library(metafor)
# plot(x, diag.panel=TRUE, main="Multivariate meta-analysis",
# axis.label=c("PD", "AL"))
# forest( rma(yi=PD, vi=var_PD, data=Berkey98) )
# title("Forest plot of PD")
# forest( rma(yi=AL, vi=var_AL, data=Berkey98) )
# title("Forest plot of AL")
# ## End(Not run)
Run the code above in your browser using DataLab