The data set includes five published trials, reported by Berkey et al. (1998), comparing surgical and non-surgical treatments for medium-severity periodontal disease, one year after treatment.
data(Berkey98)
The variables are:
Trial number
Publication year
Number of patients
Patient improvements (mm) in probing depth
Patient improvements (mm) in attachment level
Sampling variance of PD
Sampling covariance between PD and AD
Sampling variance of AL
# NOT RUN {
data(Berkey98)
#### ML estimation method
## Multivariate meta-analysis
summary( meta(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL),
data=Berkey98, I2=c("I2q", "I2hm", "I2am")) )
## Multivariate meta-analysis with "publication year-1979" as the predictor
summary( meta(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL),
x=scale(pub_year, center=1979), data=Berkey98,
RE.lbound=NA) )
## Multivariate meta-analysis with equality constraint on the regression coefficients
summary( meta(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL),
x=scale(pub_year, center=1979), data=Berkey98,
coef.constraints=matrix(c("0.3*Eq_slope", "0.3*Eq_slope"),
nrow=2)) )
#### REML estimation method
## Multivariate meta-analysis
summary( reml(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL),
data=Berkey98,
model.name="Multivariate meta analysis with REML") )
## Multivariate meta-analysis with "publication year-1979" as the predictor
## Diagonal structure for the variance component
summary( reml(y=cbind(PD, AL), v=cbind(var_PD, cov_PD_AL, var_AL),
RE.constraints=Diag(c("1e-5*Tau2_1_1", "1e-5*Tau2_2_2")),
x=scale(pub_year, center=1979), data=Berkey98) )
# }
Run the code above in your browser using DataLab