Learn R Programming

metaSEM (version 1.2.5.1)

calEffSizes: Calculate Effect Sizes using lavaan Models

Description

It calculates effect sizes with Delta Method by formulating the effect sizes as functions of SEM in lavaan.

Usage

calEffSizes(model, n, Cov, Mean, lavaan.output=FALSE, ...)

Value

Effect sizes and their sampling covariance matrix or a lavaan fitted object.

Arguments

model

A lavaan model. Effect sizes are defined as functions of SEM parameters with :=.

n

Sample sizes

Cov

A covariance matrix or a list of covariance matrices.

Mean

Optional sample means.

lavaan.output

If TRUE, it returns the fitted object instead of the effect sizes and their sampling covariance matrix.

...

Further arguments passed to sem.

Author

Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>

References

Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Chichester, West Sussex: John Wiley & Sons, Inc.

Cheung, M. W.-L. (2018). Computing multivariate effect sizes and their sampling covariance matrices with structural equation modeling: Theory, examples, and computer simulations. Frontiers in Psychology, 9(1387). https://doi.org/10.3389/fpsyg.2018.01387

See Also

smdMES, smdMTS

Examples

Run this code
if (FALSE) { 
## Select ATT, Bi, and BEH 
obs.vars <- c("BEH", "BI", "ATT")

## Select one study from Cooke16 for illustration
my.cor <- Cooke16$data[[4]][obs.vars, obs.vars]
my.n  <- Cooke16$n[4]

## Effect sizes: indirect effect and direct effect
model <- "BEH ~ c*ATT + b*BI
          BI ~ a*ATT
          ## Indirect effect
          Ind := a*b
          Dir := c"

calEffSizes(model=model, n=my.n, Cov=my.cor, lavaan.output=FALSE)

## Return the lavaan fitted model
fit <- calEffSizes(model=model, n=my.n, Cov=my.cor, lavaan.output=TRUE)
lavaan::summary(fit)
    
lavaan::parameterestimates(fit)  
}

Run the code above in your browser using DataLab