Learn R Programming

metabolic

The goal of metabolic is to provide all the data and the tools necessary to reproduce the meta-analysis published in Medicine & Science in Sports & Exercise.

Installation

You can install the released version of metabolic from CRAN with:

install.packages("metabolic")

You can install the development version of metabolic from from GitHub with:

# install.packages("remotes")
remotes::install_github("fmmattioni/metabolic")

Datasets

Dataset to reproduce meta-analyses

metabolic::metabolic_meta
#> # A tibble: 391 × 21
#>    study        endpoint population   age category_age duration category_durati…
#>    <chr>        <chr>    <fct>      <dbl> <fct>           <dbl> <fct>           
#>  1 Abdelbasset… BMI      T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  2 Abdelbasset… HbA1c    T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  3 Abdelbasset… HDL      T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  4 Abdelbasset… HOMA-IR  T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  5 Abdelbasset… LDL      T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  6 Abdelbasset… Total C… T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  7 Abdelbasset… Triglyc… T2D         54.6 > 50 y              8 5 - 10 weeks    
#>  8 Bækkerud 20… Body Ma… Overweigh…  40   30 - 50 y           6 5 - 10 weeks    
#>  9 Bækkerud 20… Flow-me… Overweigh…  40   30 - 50 y           6 5 - 10 weeks    
#> 10 Bækkerud 20… VO2max   Overweigh…  40   30 - 50 y           6 5 - 10 weeks    
#> # … with 381 more rows, and 14 more variables: men_ratio <dbl>,
#> #   category_men_ratio <fct>, type_exercise <chr>, bsln <dbl>,
#> #   bsln_adjusted <dbl>, category_bsln <fct>, N_HIIE <dbl>, Mean_HIIE <dbl>,
#> #   SD_HIIE <dbl>, N_MICT <dbl>, Mean_MICT <dbl>, SD_MICT <dbl>, HIIE <chr>,
#> #   desired_effect <chr>

Dataset to build the GOfER diagram

metabolic::metabolic_gofer
#> # A tibble: 115 × 33
#>    study groups sample_populati… sample_fitness sample_men_ratio anamnese_smoker
#>    <chr> <chr>  <chr>            <chr>                     <dbl> <chr>          
#>  1 Abde… HIIT   "T2D"            N/R                        0.63 N              
#>  2 Abde… MICT   "T2D"            N/R                        0.53 N              
#>  3 Bækk… HIIT   "Overweight\nOb… Sedentary                  0.41 N/R            
#>  4 Bækk… MICT   "Overweight\nOb… Sedentary                  0.41 N/R            
#>  5 Beet… HIIT   "Overweight\nOb… Active                     0.66 N/R            
#>  6 Beet… MICT   "Overweight\nOb… Active                     0.8  N/R            
#>  7 Burg… SIT    "Healthy"        Sedentary                  0.5  N/R            
#>  8 Burg… MICT   "Healthy"        Sedentary                  0.5  N/R            
#>  9 Ciol… HIIT   "Healthy"        Sedentary                  0    N              
#> 10 Ciol… MICT   "Healthy"        Sedentary                  0    N              
#> # … with 105 more rows, and 27 more variables:
#> #   anamnese_medicines_to_control_BP <chr>, age <dbl>,
#> #   design_type_of_exercise <chr>, design_sample_size <chr>,
#> #   design_training_duration <dbl>, design_training_frequency <chr>,
#> #   design_exercise_intensity <chr>, hiie_n_reps <chr>,
#> #   hiie_rep_duration <chr>, hiie_work_rest_ratio <chr>, compliance <dbl>,
#> #   endpoints_vo2max <chr>, endpoints_fmd <chr>, endpoints_body_mass <chr>, …

Reproduce meta-analysis for each clinical endpoint

library(metabolic)

perform_meta(endpoint = "VO2max")
#> ──────────────────────────  * VO2max meta-analysis *  ──────────────────────────
#> ✔ 'Overall'
#> ✔       └─ Performing meta-analysis
#> ✔       └─ Performing sensitivity analysis
#> ✔                └─ Meta-analysis results are robust! Keep going!
#> ✔ Performing meta-analysis and meta-regression on the Population subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Age subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Training Duration subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Men Ratio subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Type of Exercise subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Baseline subgroup
#> 
#> ✔ Performing meta-analysis and meta-regression on the Type of HIIE subgroup
#> 
#> ──────────────────────────────────  * DONE *  ──────────────────────────────────
#> # A tibble: 8 × 4
#>   subgroup          meta_analysis sensitivity_analysis meta_regression
#>   <chr>             <named list>  <named list>         <named list>   
#> 1 Overall           <metacont>    <metainf>            <lgl [1]>      
#> 2 Population        <metacont>    <lgl [1]>            <metareg>      
#> 3 Age               <metacont>    <lgl [1]>            <metareg>      
#> 4 Training Duration <metacont>    <lgl [1]>            <metareg>      
#> 5 Men Ratio         <metacont>    <lgl [1]>            <metareg>      
#> 6 Type of Exercise  <metacont>    <lgl [1]>            <metareg>      
#> 7 Baseline Values   <metacont>    <lgl [1]>            <metareg>      
#> 8 Type of HIIE      <metacont>    <lgl [1]>            <metareg>

Build a GOfER (Graphical Overview for Evidence Reviews) diagram

Citation

citation("metabolic")
#> 
#> To cite metabolic in publications use:
#> 
#> Maturana M, Felipe, Martus, Peter, Zipfel, Stephan, Nieß, M A (2020).
#> "Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk
#> Factors in Health and Disease: a meta-anaylsis." _Medicine & Science in
#> Sports & Exercise_, *Published Ahead of Print*. doi:
#> 10.1249/MSS.0000000000002506 (URL:
#> https://doi.org/10.1249/MSS.0000000000002506), <URL:
#> https://journals.lww.com/acsm-msse/Abstract/9000/Effectiveness_of_HIIE_versus_MICT_in_Improving.96194.aspx>.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Article{,
#>     title = {Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: a meta-anaylsis},
#>     author = {Mattioni Maturana and {Felipe} and {Martus} and {Peter} and {Zipfel} and {Stephan} and {Nieß} and Andreas M},
#>     journal = {Medicine & Science in Sports & Exercise},
#>     volume = {Published Ahead of Print},
#>     year = {2020},
#>     url = {https://journals.lww.com/acsm-msse/Abstract/9000/Effectiveness_of_HIIE_versus_MICT_in_Improving.96194.aspx},
#>     doi = {10.1249/MSS.0000000000002506},
#>   }

Copy Link

Version

Install

install.packages('metabolic')

Monthly Downloads

246

Version

0.1.2

License

CC0

Issues

Pull Requests

Stars

Forks

Maintainer

Felipe Mattioni Maturana

Last Published

October 10th, 2023

Functions in metabolic (0.1.2)

metabolic-package

metabolic: Datasets and Functions for Reproducing Meta-Analyses
build_report

Build HTML report
perform_meta

Perform meta-analysis
plot_metabolic

Plot results
%>%

Pipe operator
plot_small_study_effects

Plot small-study effects analysis
read_paper

Read the paper
build_gofer

Build a GOfER diagram (Graphical Overview for Evidence Reviews)
perform_bind

Combine the subgroup meta-analyses
metabolic_meta

Dataset for reproducing the meta-analysis
metabolic_gofer

Dataset for building a GOfER diagram (Graphical Overview for Evidence Reviews)
detect_sensitivity

Detect single-study influence