
For a given table in a taxmap
object, calculate the
proportion of samples (i.e. columns) with greater than a minimum value.
calc_prop_samples(
obj,
data,
cols = NULL,
groups = "prop_samples",
other_cols = FALSE,
out_names = NULL,
drop = FALSE,
more_than = 0,
dataset = NULL
)
A tibble
A taxmap
object
The name of a table in obj$data
.
The columns in data
to use. By
default, all numeric columns are used. Takes one of the following inputs:
All/No columns will used.
The names of columns to use
The indexes of columns to use
Use the columns corresponding to TRUE
values.
Group multiple columns per treatment/group. This should be a
vector of group IDs (e.g. character, integer) the same length as
cols
that defines which samples go in which group. When used, there
will be one column in the output for each unique value in groups
.
Preserve in the output non-target columns present in the input data. New columns will always be on the end. The "taxon_id" column will be preserved in the front. Takes one of the following inputs:
No columns will be added back, not even the taxon id column.
All/None of the non-target columns will be preserved.
The names of columns to preserve
The indexes of columns to preserve
Preserve the columns corresponding to TRUE
values.
The names of count columns in the output. Must be the same
length and order as cols
(or unique(groups)
, if groups
is used).
If groups
is not used, return a vector of the results instead
of a table with one column.
A sample must have greater than this value for it to be counted as present.
DEPRECIATED. use "data" instead.
Other calculations:
calc_diff_abund_deseq2()
,
calc_group_mean()
,
calc_group_median()
,
calc_group_rsd()
,
calc_group_stat()
,
calc_n_samples()
,
calc_obs_props()
,
calc_taxon_abund()
,
compare_groups()
,
counts_to_presence()
,
rarefy_obs()
,
zero_low_counts()
if (FALSE) {
# Parse data for example
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",
class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")
# Count samples with at least one read
calc_prop_samples(x, data = "tax_data")
# Count samples with at least 5 reads
calc_prop_samples(x, data = "tax_data", more_than = 5)
# Return a vector instead of a table
calc_prop_samples(x, data = "tax_data", drop = TRUE)
# Only use some columns
calc_prop_samples(x, data = "tax_data", cols = hmp_samples$sample_id[1:5])
# Return a count for each treatment
calc_prop_samples(x, data = "tax_data", groups = hmp_samples$body_site)
# Rename output columns
calc_prop_samples(x, data = "tax_data", groups = hmp_samples$body_site,
out_names = c("A", "B", "C", "D", "E"))
# Preserve other columns from input
calc_prop_samples(x, data = "tax_data", other_cols = TRUE)
calc_prop_samples(x, data = "tax_data", other_cols = 2)
calc_prop_samples(x, data = "tax_data", other_cols = "otu_id")
}
Run the code above in your browser using DataLab