Learn R Programming

metadat (version 1.4-0)

dat.bornmann2007: Studies on Gender Differences in Grant and Fellowship Awards

Description

Results from 21 studies on gender differences in grant and fellowship awards.

Usage

dat.bornmann2007

Arguments

Format

The data frame contains the following columns:

studycharacterstudy reference
obsnumericobservation within study
doctypecharacterdocument type
gendercharactergender of the study authors
yearnumeric(average) cohort year
orgcharacterfunding organization / program
countrycharactercountry of the funding organization / program
typecharacterfellowship or grant application
disciplinecharacterdiscipline / field
wawardnumericnumber of women who received a grant/fellowship award
wtotalnumericnumber of women who applied for an award
mawardnumericnumber of men who received a grant/fellowship award
mtotalnumericnumber of men who applied for an award

Concepts

sociology, odds ratios, multilevel models

Details

The studies in this dataset examine whether the chances of receiving a grant or fellowship award differs for men and women. Note that many studies provide multiple comparisons (e.g., for different years / cohorts / disciplines). A multilevel meta-analysis model can be used to account for the multilevel structure in these data.

References

Marsh, H. W., Bornmann, L., Mutz, R., Daniel, H.-D., & O'Mara, A. (2009). Gender effects in the peer reviews of grant proposals: A comprehensive meta-analysis comparing traditional and multilevel approaches. Review of Educational Research, 79(3), 1290--1326. https://doi.org/10.3102/0034654309334143

Examples

Run this code
### copy data into 'dat' and examine data
dat <- dat.bornmann2007
head(dat, 16)

if (FALSE) {
### load metafor package
library(metafor)

### calculate log odds ratios and corresponding sampling variances
dat <- escalc(measure="OR", ai=waward, n1i=wtotal, ci=maward, n2i=mtotal, data=dat)

### fit multilevel meta-analysis model
res <- rma.mv(yi, vi, random = ~ 1 | study/obs, data=dat)
res

### estimated average odds ratio (with 95% CI/PI)
predict(res, transf=exp, digits=2)

### test for a difference between fellowship and grant applications
res <- rma.mv(yi, vi, mods = ~ type, random = ~ 1 | study/obs, data=dat)
res
predict(res, newmods=0:1, transf=exp, digits=2)
}

Run the code above in your browser using DataLab