Learn R Programming

metadat (version 1.4-0)

dat.colditz1994: Studies on the Effectiveness of the BCG Vaccine Against Tuberculosis

Description

Results from 13 studies examining the effectiveness of the Bacillus Calmette-Guerin (BCG) vaccine against tuberculosis.

Usage

dat.colditz1994

Arguments

Format

The data frame contains the following columns:

trialnumerictrial number
authorcharacterauthor(s)
yearnumericpublication year
tposnumericnumber of TB positive cases in the treated (vaccinated) group
tnegnumericnumber of TB negative cases in the treated (vaccinated) group
cposnumericnumber of TB positive cases in the control (non-vaccinated) group
cnegnumericnumber of TB negative cases in the control (non-vaccinated) group
ablatnumericabsolute latitude of the study location (in degrees)
alloccharactermethod of treatment allocation (random, alternate, or systematic assignment)

Concepts

medicine, risk ratios, meta-regression

Details

The 13 studies provide data in terms of 2 22x2 tables in the form:

TB positiveTB negative
vaccinated grouptpostneg
control groupcposcneg

The goal of the meta-analysis was to examine the overall effectiveness of the BCG vaccine for preventing tuberculosis and to examine moderators that may potentially influence the size of the effect.

The dataset has been used in several publications to illustrate meta-analytic methods (see ‘References’).

References

Berkey, C. S., Hoaglin, D. C., Mosteller, F., & Colditz, G. A. (1995). A random-effects regression model for meta-analysis. Statistics in Medicine, 14(4), 395--411. https://doi.org/10.1002/sim.4780140406

van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. Statistics in Medicine, 21(4), 589--624. https://doi.org/10.1002/sim.1040

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1--48. https://doi.org/10.18637/jss.v036.i03

Examples

Run this code
### copy data into 'dat' and examine data
dat <- dat.colditz1994
dat

if (FALSE) {
### load metafor package
library(metafor)

### calculate log risk ratios and corresponding sampling variances
dat <- escalc(measure="RR", ai=tpos, bi=tneg,
                            ci=cpos, di=cneg, data=dat,
                            slab=paste0(author, ", ", year))
dat

### random-effects model
res <- rma(yi, vi, data=dat)
res

### average risk ratio with 95% CI
predict(res, transf=exp)

### mixed-effects model with absolute latitude and publication year as moderators
res <- rma(yi, vi, mods = ~ ablat + year, data=dat)
res

### predicted average risk ratios for 10-60 degrees absolute latitude
### holding the publication year constant at 1970
predict(res, newmods=cbind(seq(from=10, to=60, by=10), 1970), transf=exp)

### note: the interpretation of the results is difficult because absolute
### latitude and publication year are strongly correlated (the more recent
### studies were conducted closer to the equator)
plot(ablat ~ year, data=dat, pch=19, xlab="Publication Year", ylab="Absolute Lattitude")
cor(dat$ablat, dat$year)
}

Run the code above in your browser using DataLab