Learn R Programming

metadat (version 1.4-0)

dat.lim2014: Studies on the Association Between Maternal Size, Offspring Size, and Number of Offsprings

Description

Results from studies examining the association between maternal size, offspring size, and number of offsprings.

Usage

dat.lim2014

Arguments

Format

The object is a list containing data frames m_o_size, m_o_fecundity, o_o_unadj, and o_o_adj that contain the following columns and the corresponding phylogenetic trees called m_o_size_tree, m_o_fecundity_tree, o_o_unadj_tree, and o_o_adj_tree:

articlenumericarticle id
authorcharacterstudy author(s)
yearnumericpublication year
speciescharacterspecies
amniotescharacterwhether the species was amniotic
environmentcharacterwhether the species were wild or captive
reprounitcharacterwhether the data were based on lifetime reproductive output or a single reproductive event (only in m_o_size and m_o_fecundity)
rinumericcorrelation coefficient
ninumericsample size

Concepts

ecology, evolution, correlation coefficients, multilevel models, phylogeny

Details

The object dat.lim2014 includes 4 datasets:

m_o_sizeon the correlation between maternal size and offspring size
m_o_fecundityon the correlation between maternal size and number of offsprings
o_o_unadjon the correlation between offspring size and number of offsprings
o_o_adjon the correlation between offspring size and number of offsprings adjusted for maternal size

Objects m_o_size_tree, m_o_fecundity_tree, o_o_unadj_tree, and o_o_adj_tree are the corresponding phylogenetic trees for the species included in each of these datasets.

References

Cinar, O., Nakagawa, S., & Viechtbauer, W. (in press). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13760

Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23(3), 494--508. https://doi.org/10.1111/j.1420-9101.2009.01915.x

Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. Evolutionary Ecology, 26(5), 1253--1274. https://doi.org/10.1007/s10682-012-9555-5

Examples

Run this code
### copy data into 'dat' and examine data
dat <- dat.lim2014$o_o_unadj
dat[1:14, -c(2:3)]

if (FALSE) {
### load metafor package
library(metafor)

### load ape package
library(ape, warn.conflicts=FALSE)

### calculate r-to-z transformed correlations and corresponding sampling variances
dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat)

### copy tree to 'tree'
tree <- dat.lim2014$o_o_unadj_tree

### compute branch lengths
tree <- compute.brlen(tree)

### compute phylogenetic correlation matrix
A <- vcv(tree, corr=TRUE)

### make copy of the species variable
dat$species.phy <- dat$species

### create effect size id variable
dat$esid <- 1:nrow(dat)

### fit multilevel phylogenetic meta-analytic model
res <- rma.mv(yi, vi,
   random = list(~ 1 | article, ~ 1 | esid, ~ 1 | species, ~ 1 | species.phy),
   R=list(species.phy=A), data=dat)
res
}

Run the code above in your browser using DataLab