data(reduced_feature)
data(metaMatMetformin)
# \donttest{
# note that this example is only to demonstrate the process of integrating
# prior knowledge into a MetaDeconfound() analysis. Using the output of a
# MetaDeconfound() run as minQValues input for a second run with the exact
# same features and metadata will not lead to any new insights since the set
# of QValues calculated by MetaDeconfound() and the set supplied using the
# minQValues parameter are identical in this case.
example_output <- MetaDeconfound(featureMat = reduced_feature,
metaMat = metaMatMetformin,
returnLong = TRUE,
logLevel = "ERROR")
minQValues <- ImportLongPrior(longPrior = example_output,
featureMat = reduced_feature,
metaMat = metaMatMetformin)
example_output2 <- MetaDeconfound(featureMat = reduced_feature,
metaMat = metaMatMetformin,
minQValues = minQValues,
logLevel = "ERROR")
# }
Run the code above in your browser using DataLab