#Example 1:
#Simulate data with a univariate linear model
set.seed(42)
data <- SimulateSMD()
#Conduct unweighted MetaForest analysis
mf.unif <- MetaForest(formula = yi ~ ., data = data$training,
whichweights = "unif", method = "DL")
#Print model
mf.unif
#Conduct random-effects weighted MetaForest analysis
mf.random <- MetaForest(formula = yi ~ ., data = data$training,
whichweights = "random", method = "DL",
tau2 = 0.0116)
#Print summary
summary(mf.random)
#Example 2: Real data from metafor
#Load and clean data
data("dat.bangertdrowns2004", package = "metadat")
df <- dat.bangertdrowns2004
df[, c(4:12)] <- apply(df[ , c(4:12)], 2, function(x){
x[is.na(x)] <- median(x, na.rm = TRUE)
x})
df$subject <- factor(df$subject)
df$yi <- as.numeric(df$yi)
#Conduct MetaForest analysis
mf.bd2004 <- MetaForest(formula = yi~ grade + length + minutes + wic+
meta, df, whichweights = "unif")
#Print MetaForest object
mf.bd2004
#Check convergence plot
plot(mf.bd2004)
#Check summary
summary(mf.bd2004, digits = 4)
#Examine variable importance plot
VarImpPlot(mf.bd2004)
Run the code above in your browser using DataLab