Learn R Programming

metagenomeSeq (version 1.10.0)

aggregateByTaxonomy: Aggregates a MRexperiment object or counts matrix to a particular level.

Description

Aggregates a MRexperiment object or counts matrix to a particular level.

Usage

aggregateByTaxonomy(obj, lvl, alternate = FALSE, norm = FALSE, log = FALSE, aggfun = colSums, sl = 1000, out = "MRexperiment")
aggTax(obj, lvl, alternate = FALSE, norm = FALSE, log = FALSE, aggfun = colSums, sl = 1000, out = "MRexperiment")

Arguments

obj
A MRexperiment object or count matrix.
lvl
featureData column name from the MRexperiment object or if count matrix object a vector of labels.
alternate
Use the rowname for undefined OTUs instead of aggregating to "no_match".
norm
Whether to aggregate normalized counts or not.
log
Whether or not to log2 transform the counts - if MRexperiment object.
aggfun
Aggregation function.
sl
scaling value, default is 1000.
out
Either 'MRexperiment' or 'matrix'

Value

An aggregated count matrix.

Details

Using the featureData information in the MRexperiment, calling aggregateByTaxonomy on a MRexperiment and a particular featureData column (i.e. 'genus') will aggregate counts to the desired level using the aggfun function (default colSums). Possible aggfun alternatives include colMeans and colMedians.

Examples

Run this code
data(mouseData)
aggregateByTaxonomy(mouseData[1:100,],lvl="class",norm=TRUE,aggfun=colSums)
# not run
# aggregateByTaxonomy(mouseData,lvl="class",norm=TRUE,aggfun=colMedians)
# aggTax(mouseData,lvl='phylum',norm=FALSE,aggfun=colSums)

Run the code above in your browser using DataLab