###
### Example 1: gene expression data
### - this uses one gene from the HGU.prep.list object
# load data and extract components for meta-analysis (for one gene)
data(HGU.prep.list)
gene.data <- HGU.prep.list[[7]]
theta <- gene.data@theta
V <- gene.data@V
X <- gene.data@X
M <- gene.data@M
dep.grps <- list(c(1:2),c(4:6))
gene.name <- gene.data@gene
# fit a regular REMA (no hierarchical dependence)
results <- metahdep.REMA(theta, V, X, meta.name=gene.name)
results
# fit hierarchical dependence model (with delta-splitting),
# using two different methods for specifying the dependence structure
results.dsplitM <- metahdep.REMA(theta, V, X, M, delta.split=TRUE,
meta.name=gene.name, center.X=TRUE)
results.dsplitM
results.dsplitd <- metahdep.REMA(theta, V, X, dep.groups=dep.grps,
delta.split=TRUE, meta.name=gene.name, center.X=TRUE)
results.dsplitd
###
### Example 2: glossing data
### - this produces part of Table 6 in the Stevens and Taylor JEBS paper.
data(gloss)
dep.groups <- list(c(2,3,4,5),c(10,11,12))
REMA.ds <- metahdep.REMA(gloss.theta, gloss.V, gloss.X, center.X=TRUE,
delta.split=TRUE, dep.groups=dep.groups)
round(cbind(t(REMA.ds$beta.hats), sqrt(diag(REMA.ds$cov.matrix)),
t(REMA.ds$beta.hat.p.values)),4)
Run the code above in your browser using DataLab