Learn R Programming

metan (version 1.15.0)

utils_na_zero: Utilities for handling with NA and zero values

Description

[Stable]

NAs and zeros can increase the noise in multi-environment trial analysis. This collection of functions will make it easier to deal with them.

  • fill_na(): Fills NA in selected columns using the next or previous entry.

  • has_na(), has_zero(): Check for NAs and 0s in the data and return a logical value.

  • random_na(): Generate random NA values in a two-way table based on a desired proportion.

  • remove_cols_na(), remove_cols_zero(): Remove columns with NAs and 0s, respectively.

  • remove_rows_na(), remove_rows_zero(): Remove rows with NAs and 0s, respectively.

  • select_cols_na(), select_cols_zero(): Select columns with NAs and 0s, respectively.

  • select_rows_na(), select_rows_zero(): Select rows with NAs and 0s, respectively.

  • replace_na(), replace_zero(): Replace NAs and 0s, respectively, with a replacement value.

Usage

fill_na(.data, ..., direction = "down")

has_na(.data)

remove_rows_na(.data, verbose = TRUE)

remove_cols_na(.data, verbose = TRUE)

select_cols_na(.data, verbose = TRUE)

select_rows_na(.data, verbose = TRUE)

replace_na(.data, ..., replacement = 0)

random_na(.data, prop)

has_zero(.data)

remove_rows_zero(.data, verbose = TRUE)

remove_cols_zero(.data, verbose = TRUE)

select_cols_zero(.data, verbose = TRUE)

select_rows_zero(.data, verbose = TRUE)

replace_zero(.data, ..., replacement = NA)

Arguments

.data

A data frame.

...

Variables to fill NAs in fill_na(), replace NAs in replace_na() or zeros in replace_zero(). If ... is null then all variables in .data will be evaluated. It must be a single variable name or a comma-separated list of unquoted variables names. Select helpers are also allowed.

direction

Direction in which to fill missing values. Currently either "down" (the default), "up", "downup" (i.e. first down and then up) or "updown" (first up and then down).

verbose

Logical argument. If TRUE (default) shows in console the rows or columns deleted.

replacement

The value used for replacement. Defaults to 0. Use replacement. = "colmean" to replace missing values with column mean.

prop

The proportion (percentage) of NA values to generate in .data.

Value

A data frame with rows or columns with NA values deleted.

Examples

Run this code
# NOT RUN {
library(metan)
data_naz <- iris %>%
              group_by(Species) %>%
              doo(~head(., n = 3)) %>%
              as_character(Species)
data_naz
data_naz[c(2:3, 6, 8), c(1:2, 4, 5)] <- NA
data_naz[c(2, 7, 9), c(2, 3, 4)] <- 0
has_na(data_naz)
has_zero(data_naz)

# Fill NA values of column GEN
fill_na(data_naz, Species)

# Remove columns
remove_cols_na(data_naz)
remove_cols_zero(data_naz)
remove_rows_na(data_naz)
remove_rows_zero(data_naz)

# Select columns
select_cols_na(data_naz)
select_cols_zero(data_naz)
select_rows_na(data_naz)
select_rows_zero(data_naz)

# Replace values
replace_na(data_naz)
replace_zero(data_naz)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab