ammi_indexes(.data, order.y = NULL, level = 0.95)AMMI_indexes(.data, order.y = NULL, level = 0.95)
An object of class waas
or performs_ammi
A vector of the same length of x
used to order the
response variable. Each element of the vector must be one of the 'h'
or 'l'
. If 'h'
is used, the response variable will be ordered
from maximum to minimum. If 'l'
is used then the response variable
will be ordered from minimum to maximum. Use a comma-separated vector of
names. For example, order.y = c("h, h, l, h, l")
.
The confidence level. Defaults to 0.95.
A list where each element contains the result AMMI-based stability indexes for one variable.
First, let's define some symbols: N' is the number of significant interation principal component axis (IPCs) that were retained in the AMMI model via F tests); _n is the singular value for th IPC and correspondingly _n^2 its eigen value; _in is the eigenvector value for ith genotype; _jn is the eigenvector value for the th environment. PC_1, PC_2, and PC_n are the scores of 1st, 2nd, and nth IPC; respectively; _1, _2, and _n are percentage sum of squares explained by the 1st, 2nd, and nth IPC, respectively.
AMMI Based Stability Parameter (ASTAB) (Rao and Prabhakaran 2005). ASTAB = _n=1^N'_n_in^2
AMMI Stability Index (ASI) (Jambhulkar et al. 2017) ASI = [ PC_1^2 _1^2 ]+[ PC_2^2 _2^2 ]
AMMI-stability value (ASV) (Purchase et al., 2000). ASV_i=SS_IPCA1SS_IPCA2(IPC A 1)^2+(IPCA 2)^2
Sum Across Environments of Absolute Value of GEI Modelled by AMMI (AVAMGE) (Zali et al. 2012) AV_(AMGE) = _j=1^E _n=1^N' |_n_in _jn |
Annicchiarico's D Parameter values (Da) (Annicchiarico 1997) D_a = _n=1^N'(_n_in)^2
Zhang's D Parameter (Dz) (Zhang et al. 1998) D_z = _n=1^N'_in^2
Sums of the Averages of the Squared Eigenvector Values (EV) (Zobel 1994) EV = _n=1^N'_in^2N'
Stability Measure Based on Fitted AMMI Model (FA) (Raju 2002) FA = _n=1^N'_n^2_in^2
Modified AMMI Stability Index (MASI) (Ajay et al. 2018) MASI = _n=1^N' PC_n^2 _n^2
Modified AMMI Stability Value (MASV) (Ajay et al. 2019) MASV = _n=1^N'-1 (SSIPC_nSSIPC_n+1 ) (PC_n)^2 + (PC_N' )^2
Sums of the Absolute Value of the IPC Scores (SIPC) (Sneller et al. 1997) SIPC = _n=1^N' | _n^0.5_in|
Absolute Value of the Relative Contribution of IPCs to the Interaction (Za) (Zali et al. 2012) Za = _i=1^N' | _n_in |
Weighted average of absolute scores (WAAS) (Olivoto et al. 2019) WAAS_i = _k = 1^p |IPCA_ik _k/ _k = 1^p_k
For all the statistics, simultaneous selection indexes (SSI) are also computed by summation of the ranks of the stability and mean performance, Y_R, (Farshadfar, 2008).
Ajay BC, Aravind J, Abdul Fiyaz R, Bera SK, Kumar N, Gangadhar K, Kona P (2018). <U+201C>Modified AMMI Stability Index (MASI) for stability analysis.<U+201D> ICAR-DGR Newsletter, 18, 4<U+2013>5.
Ajay BC, Aravind J, Fiyaz RA, Kumar N, Lal C, Gangadhar K, Kona P, Dagla MC, Bera SK (2019). <U+201C>Rectification of modified AMMI stability value (MASV).<U+201D> Indian Journal of Genetics and Plant Breeding (The), 79, 726<U+2013>731. https://www.isgpb.org/article/rectification-of-modified-ammi-stability-value-masv.
Annicchiarico P (1997). <U+201C>Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy.<U+201D> Euphytica, 94(1), 53<U+2013>62. 10.1023/A:1002954824178
Farshadfar E (2008) Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pakistan J Biol Sci 11:1791<U+2013>1796. 10.3923/pjbs.2008.1791.1796
Jambhulkar NN, Rath NC, Bose LK, Subudhi HN, Biswajit M, Lipi D, Meher J (2017). <U+201C>Stability analysis for grain yield in rice in demonstrations conducted during rabi season in India.<U+201D> Oryza, 54(2), 236<U+2013>240. 10.5958/2249-5266.2017.00030.3
Olivoto T, LUcio ADC, Silva JAG, et al (2019) Mean Performance and Stability in Multi-Environment Trials I: Combining Features of AMMI and BLUP Techniques. Agron J 111:2949<U+2013>2960. 10.2134/agronj2019.03.0220
Raju BMK (2002). <U+201C>A study on AMMI model and its biplots.<U+201D> Journal of the Indian Society of Agricultural Statistics, 55(3), 297<U+2013>322.
Rao AR, Prabhakaran VT (2005). <U+201C>Use of AMMI in simultaneous selection of genotypes for yield and stability.<U+201D> Journal of the Indian Society of Agricultural Statistics, 59, 76<U+2013>82.
Sneller CH, Kilgore-Norquest L, Dombek D (1997). <U+201C>Repeatability of yield stability statistics in soybean.<U+201D> Crop Science, 37(2), 383<U+2013>390. 10.2135/cropsci1997.0011183X003700020013x
Zali H, Farshadfar E, Sabaghpour SH, Karimizadeh R (2012). <U+201C>Evaluation of genotype <U+00D7> environment interaction in chickpea using measures of stability from AMMI model.<U+201D> Annals of Biological Research, 3(7), 3126<U+2013>3136.
Zhang Z, Lu C, Xiang Z (1998). <U+201C>Analysis of variety stability based on AMMI model.<U+201D> Acta Agronomica Sinica, 24(3), 304<U+2013>309. http://zwxb.chinacrops.org/EN/Y1998/V24/I03/304.
Zobel RW (1994). <U+201C>Stress resistance and root systems.<U+201D> In Proceedings of the Workshop on Adaptation of Plants to Soil Stress. 1-4 August, 1993. INTSORMIL Publication 94-2, 80<U+2013>99. Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln.
# NOT RUN {
library(metan)
model <-
performs_ammi(data_ge,
env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM))
model_indexes <- ammi_indexes(model)
# Alternatively (and more intuitively) using %>%
# If resp is not declared, all traits are analyzed
res_ind <- data_ge %>%
performs_ammi(ENV, GEN, REP, verbose = FALSE) %>%
ammi_indexes()
rbind_fill_id(res_ind, .id = "TRAIT")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab