# NOT RUN {
library(metan)
################ Rounding numbers ###############
# All numeric columns
round_cols(data_ge2, digits = 1)
# Round specific columns
round_cols(data_ge2, EP, digits = 1)
########### Extract or replace numbers ##########
# Extract numbers
extract_number(data_ge, GEN)
extract_number(data_ge,
var = GEN,
drop = TRUE,
new_var = g_number)
# Replace numbers
replace_number(data_ge, GEN)
replace_number(data_ge,
var = GEN,
pattern = "1",
replacement = "_one",
pull = TRUE)
########## Extract, replace or remove strings ##########
# Extract strings
extract_string(data_ge, GEN)
extract_string(data_ge,
var = GEN,
drop = TRUE,
new_var = g_name)
# Replace strings
replace_string(data_ge, GEN)
replace_string(data_ge,
var = GEN,
new_var = GENOTYPE,
pattern = "G",
replacement = "GENOTYPE_")
# Remove strings
remove_strings(data_ge)
remove_strings(data_ge, ENV)
############ Find text in numeric sequences ###########
mixed_text <- data.frame(data_ge)
mixed_text[2, 4] <- "2..503"
mixed_text[3, 4] <- "3.2o75"
find_text_in_num(mixed_text, GY)
############# upper, lower and title cases ############
gen_text <- c("GEN 1", "Gen 1", "gen 1")
all_lower_case(gen_text)
all_upper_case(gen_text)
all_title_case(gen_text)
# A whole data frame
all_lower_case(data_ge)
############### Tidy up messy text string ##############
messy_env <- c("ENV 1", "Env 1", "Env1", "env1", "Env.1", "Env_1")
tidy_strings(messy_env)
messy_gen <- c("GEN1", "gen 2", "Gen.3", "gen-4", "Gen_5", "GEN_6")
tidy_strings(messy_gen)
messy_int <- c("EnvGen", "Env_Gen", "env gen", "Env Gen", "ENV.GEN", "ENV_GEN")
tidy_strings(messy_int)
library(tibble)
# Or a whole data frame
df <- tibble(Env = messy_env,
gen = messy_gen,
Env_GEN = interaction(Env, gen),
y = rnorm(6, 300, 10))
df
tidy_strings(df)
# }
Run the code above in your browser using DataLab