Learn R Programming

meteo (version 0.1-4)

pred.strk: Spatio-temporal regression kriging

Description

Function for spatio-temporal regression kriging prediction based on krigeST. The prediction is made for raster objects, i.e. for STFDF-class objects.

Usage

pred.strk(temp,zcol = 1, newdata, pred.id = "tempPred", zero.tol = 0, 
  dynamic.cov = c(1, 2), static.cov = c(1, 2),
reg.coef=list(
tmean=c(-0.126504415,0.4051734447,0.4943247727,0.0001837527,-0.0189207588),  
tmin = c(-0.9825601517,0.5672140021,0.3344561638, 0.0003119777,-0.0243629638),
tmax = c(1.7873573081,0.350228076, 0.5569091092, 0.0002571338,-0.0012988123)
)[['tmean']],
vgm.model=list( tmean=vgmST("sumMetric",
                                space=vgm( 14.13, "Sph", 5903, 1.933),
                                time =vgm(0, "Sph",  0.1, 0),
                                joint=vgm(9.06, "Sph", 2054, 0.474),
                                 stAni=497.9),
                   tmin = vgmST("sumMetric",
                                space=vgm( 22.682, "Sph", 5725, 3.695),
                                time =vgm(0, "Sph",  0.1, 0),
                                joint=vgm(9.457, "Sph",1888, 1.67),
                                 stAni=485),
                    tmax = vgmST("sumMetric",
                                 space=vgm( 8.31, "Sph", 4930, 2.872),
                                 time =vgm(0, "Sph",  0.1, 0),
                                 joint=vgm(11.175, "Sph", 2117, 1.75),
                                 stAni=527) ) [['tmean']] ,
tiling = FALSE, ntiles = 64, parallel.processing = FALSE, cpus = 3, 
sp.nmax = 18, time.nmax = 2,fast = FALSE, computeVar = FALSE, 
do.cv = FALSE, only.cv = FALSE, out.remove = FALSE, threshold.res = 15,progress=TRUE)

Arguments

temp
object of STFDF-class containing dependent variable (observations) in space and time.
zcol
variable column name or number showing position of dependent variable in temp@data
newdata
dynamic and static covariates as STFDF-class object; spatial and temporal overlay with temp object must be possible
pred.id
identifier of new variable
zero.tol
distance values less than or equal to this threshold value locations are considered as duplicates, see rm.dupl, duplicates are removed to avoid singular covariance matrices in kriging.
dynamic.cov
vector of variable column names or numbers showing position of dynamic covariates in newdat@data; dynamic covariates are spatio-temporal explanatory variables, changing in space and time domain
static.cov
vector of variable column names or numbers showing position of static covariates in newdata@data@sp; static covariates are spatial explanatory variables changing just in space; static in time dimension
reg.coef
linear regression coefficients; order is assumed as intercept, dynamic.cov, static.cov. Coefficients can be specified by user; depending on type, number and order of dynamic and static covariates. At the moment the function cont
vgm.model
spatio-temporal variogram of regression residuals, see vgmST. At the moment the function contains spatio-temporal variogram model on residuals for mean, minimum and maximum temperature calculated globally for GSOD an
tiling
for simplified local kriging. Area is divided in tiles and kriging calculation is done for each tile separately, number of observation used per tile is defined with sp.nmax and time.nmax. Default is TRUE. If FALSE ju
ntiles
number of tiles. Default is 64. Each tile at minimum should contain less observations than sp.nmax, ideally each tile should contain observations falling in neighboring tiles.
parallel.processing
if TRUE parallel processing is performed via sfLapply
cpus
number of processing units
sp.nmax
number of nearest spatial observations that should be used for a kriging prediction for each tile
time.nmax
number of nearest time observations that should be used for a kriging prediction
fast
if TRUE tiling, tiling is done twice to avoid edge effect
computeVar
if TRUE, just variance is computed
do.cv
if TRUE, cross validation leave-one-station-out is performed
only.cv
if TRUE, only cross validation leave-one-station-out is performed without prediction
out.remove
if TRUE, potential outliers are removed. Removing procedure is iterative, all location with residual higher than defined threshold (treshold.res) are selected. Only location with highest cross validation residual is removed, than cross valida
threshold.res
critical threshold for removing potential outliers
progress
if FALSE remove progress bar

Value

  • An list object containing:
  • predan object of STFDF-class with column contains prediction or variance
  • cvcross validation information for points used in prediction, as object of STFDF-class
  • outpotential outliers, returned as vector of row names of x$cv@sp, only returned if out.remove=FALSE
  • remstremoved locations as an object of Spatial-class, if out.remove=TRUE
  • remobsremoved locations with observations as an object of STFDF-class, if out.remove=TRUE

References

Kilibarda, M., T. Hengl, G. B. M. Heuvelink, B. Graeler, E. Pebesma, M. Percec Tadic, and B. Bajat (2014), Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution, J. Geophys. Res. Atmos., 119, 2294-2313, doi:10.1002/2013JD020803.

See Also

regdata meteo2STFDF tgeom2STFDF

Examples

Run this code
# prepare data
# load observation - data.frame of mean temperatures
data(dtempc) 
# str(dtempc)
data(stations)
library(sp)
library(spacetime)
library(gstat)

# str(stations)
## lonmin,lonmax,lonmax, lonmin   latmin, latnmin,latmax,latmax
serbia= point.in.polygon(stations$lon, stations$lat, c(18,22.5,22.5,18), c(40,40,46,46))
st= stations[ serbia!=0, ]
# create STFDF
temp <- meteo2STFDF(dtempc,st)
rm(dtempc)
# str(temp)
# Adding CRS
temp@sp@proj4string <- CRS('+proj=longlat +datum=WGS84')

# load covariates for mean temperatures
data(regdata)
# str(regdata)
regdata@sp@proj4string <- CRS('+proj=longlat +datum=WGS84')

# Calculate prediction of mean temperatures for "2011-07-05" 
# global model is used for regression and variogram
# load precalculated variograms
data(tvgms)
data(tregcoef)
res= pred.strk(temp,zcol=1, newdata= regdata[,1,drop=FALSE], 
              reg.coef=tregcoef[[1]] ,vgm.model=tvgms[[1]], progress=FALSE )

## plot prediction
# stplot(res$pred, col.regions=bpy.colors())


# t1= temp[regdata@sp,]
# # create fake observations
# t1@data$tempc[seq(1,120,by=8)] =35
# 
# 
# res= pred.strk(t1,zcol=1, newdata= regdata[,1:2], 
#                reg.coef=tregcoef[[1]], vgm.model=tvgms[[1]] , 
#                threshold.res=5, do.cv=T, out.remove = T)
# # plot cross validation residuals 
# stplot(res$cv[,,'resid.cv'] , col.regions=bpy.colors())
# 
# # plot locations of removed stations
# spplot(res$remst, zcol='station_name' , col.regions=bpy.colors())
# #plot removed stations as time-series
# row.names(res$remobs@sp) = res$remst$station_name
# res$remobs[,1:2,c('tempc','pred.cv')]
# stplot(res$remobs[,1:2,c('tempc','pred.cv')], mode='tp')

## Calculate prediction of mean temperature for "2011-07-05" "2011-07-06"
## only MODIS is used as covariate

# modisVGM =vgmST("sumMetric",space=vgm( 18.27, "Sph", 6000, 3.22),
#                                           time =vgm(0, "Sph",  0.1, 0),
#                                           joint=vgm(8.34, "Sph", 2349, 1.80),
#                                           stAni=583)
# attr(modisVGM,"temporal unit") = "days"                                           

# rkmod <-  pred.strk(temp,zcol=1, newdata= STFDF(regdata@sp,
#                time=as.POSIXct("2011-07-05"), endTime=as.POSIXct("2011-07-06"), 
#                data=regdata[,1]@data) , threshold.res=10, 
#              dynamic.cov='modis', static.cov=NULL,
#               reg.coef= c(-0.23,0.7303284),
#               vgm.model= modisVGM  )
                                           
## coefficients and variogram is calculated globally for GSOD and ECA&D obs. for 2011 year 

# stplot(rkmod$pred, col.regions=bpy.colors())

## parallel processing
# library(snowfall)
# rkmod <-  pred.strk(temp,zcol=1, 
#                   newdata= STFDF(regdata@sp,
#                    time=as.POSIXct("2011-07-05"), endTime=as.POSIXct("2011-07-06"), 
#                    data=regdata[,1]@data) ,
#                     threshold.res=10, 
#                     dynamic.cov='modis', static.cov=NULL,
#                     reg.coef= c(-0.23,0.7303284),
#                     vgm.model= modisVGM, parallel.processing=TRUE)

Run the code above in your browser using DataLab