emSNMoE: emSNMoE implements the ECM algorithm to fit a Skew-Normal Mixture of Experts
(SNMoE).
Description
emSNMoE implements the maximum-likelihood parameter estimation of a
Skew-Normal Mixture of Experts (SNMoE) model by the Expectation Conditional
Maximization (ECM) algorithm.
emSNMoE function implements the ECM algorithm for the SNMoE model.
This function starts with an initialization of the parameters done by the
method initParam of the class ParamSNMoE, then it
alternates between the E-Step (method of the class StatSNMoE)
and the M-Step (method of the class ParamSNMoE) until
convergence (until the relative variation of log-likelihood between two
steps of the ECM algorithm is less than the threshold parameter).
# NOT RUN {data(tempanomalies)
x <- tempanomalies$Year
y <- tempanomalies$AnnualAnomaly
snmoe <- emSNMoE(X = x, Y = y, K = 2, p = 1, verbose = TRUE)
snmoe$summary()
snmoe$plot()
# }