emTMoE: emTMoE implements the ECM algorithm to fit a t Mixture of Experts (TMoE).
Description
emTMoE implements the maximum-likelihood parameter estimation of a Student
Mixture of Experts (TMoE) model by the Conditional Expectation Maximization
(ECM) algorithm.
emTMoE function implements the ECM algorithm for the TMoE model. This
function starts with an initialization of the parameters done by the method
initParam of the class ParamTMoE, then it alternates between
the E-Step (method of the class StatTMoE) and the M-Step
(method of the class ParamTMoE) until convergence (until the
relative variation of log-likelihood between two steps of the ECM algorithm
is less than the threshold parameter).
# NOT RUN {data(tempanomalies)
x <- tempanomalies$Year
y <- tempanomalies$AnnualAnomaly
tmoe <- emTMoE(X = x, Y = y, K = 2, p = 1, verbose = TRUE)
tmoe$summary()
tmoe$plot()
# }