It estimates the RMLA, the square root of the systematic error
component to the Mean Squared Error (MSE), for a continuous predicted-observed
dataset following Correndo et al. (2021).
an object of class numeric within a list (if tidy = FALSE) or within a
data frame (if tidy = TRUE).
Arguments
data
(Optional) argument to call an existing data frame containing the data.
obs
Vector with observed values (numeric).
pred
Vector with predicted values (numeric).
tidy
Logical operator (TRUE/FALSE) to decide the type of return. TRUE
returns a data.frame, FALSE returns a list; Default : FALSE.
na.rm
Logic argument to remove rows with missing values
(NA). Default is na.rm = TRUE.
Details
The RMLA represents the systematic (bias) component of the MSE
expressed into the original variable units.
It is obtained via a symmetric decomposition of the MSE (invariant to
predicted-observed orientation) using a symmetric regression line (SMA).
The RMLA is equal to the square-root of the sum of systematic differences
divided by the sample size (n).
The greater the value the greater the bias of the predictions.
For the formula and more details, see online-documentation
References
Correndo et al. (2021).
Revisiting linear regression to test agreement in continuous predicted-observed datasets.
Agric. Syst. 192, 103194. tools:::Rd_expr_doi("10.1016/j.agsy.2021.103194")