data(multcif)
times <- seq(0.3,1,length=4)
add<-comp.risk(Surv(time,cause>0)~+1+cluster(id),data=multcif,multcif$cause,n.sim=0,causeS=1,
times=times,max.clust=NULL)
out1<-random.cif(add,data=multcif,cause1=1,cause2=1)
summary(out1)
zyg <- rep(rbinom(200,1,0.5),each=2)
theta.des <- model.matrix(~-1+factor(zyg))
###theta.des<-model.matrix(~-1+factor(zyg),data=np)
out2<-random.cif(add,data=multcif,cause1=1,cause2=1,theta.des=theta.des)
summary(out2)
#########################################
##### 2 different causes
#########################################
multcif$cause[multcif$cause==0] <- 2
###times<-sort(multcif$time[multcif$status \\\%in\\\% c(1,2)])
add1<-comp.risk(Surv(time,status>0)~const(X)+cluster(id),data=multcif,causeS=1,
multcif$cause,n.sim=0,times=times)
add2<-comp.risk(Surv(time,status>0)~const(X)+cluster(id),data=multcif,causeS=2,
multcif$cause,n.sim=0,times=times)
out1<-random.cif(add1,data=multcif,cause1=1,cause2=2,cif2=add2)
summary(out1) ## negative dependence
out1g<-random.cif(add1,data=multcif,cause1=1,cause2=2,cif2=add2,theta.des=theta.des)
summary(out1g)
Run the code above in your browser using DataLab