data(multcif)
times <- seq(0.3,1,length=4)
add<-comp.risk(Hist(time,cause)~+1+cluster(id),data=multcif,cause=1,
n.sim=0,times=times,max.clust=NULL)
out1<-random.cif(add,data=multcif,cause1=1,cause2=1)
summary(out1)
zyg <- rep(rbinom(200,1,0.5),each=2)
theta.des <- model.matrix(~-1+factor(zyg))
###theta.des<-model.matrix(~-1+factor(zyg),data=np)
out2<-random.cif(add,data=multcif,cause1=1,cause2=1,theta.des=theta.des)
summary(out2)
#########################################
##### 2 different causes
#########################################
## multcif$cause[multcif$cause==0] <- 2
## ###times<-sort(multcif$time[multcif$status \\\%in\\\% c(1,2)])
## add1<-comp.risk(Hist(time,status)~const(X)+cluster(id),data=multcif,cause=1,
## multcif$cause,n.sim=0,times=times)
## add2<-comp.risk(Hist(time,status)~const(X)+cluster(id),data=multcif,cause=2,
## multcif$cause,n.sim=0,times=times)
## out1<-random.cif(add1,data=multcif,cause1=1,cause2=2,cif2=add2)
## summary(out1) ## negative dependence
## out1g<-random.cif(add1,data=multcif,cause1=1,cause2=2,
## cif2=add2,theta.des=theta.des)
## summary(out1g)Run the code above in your browser using DataLab