Learn R Programming

mets (version 1.2)

bicomprisk: Estimation of concordance in bivariate competing risks data

Description

Estimation of concordance in bivariate competing risks data

Usage

bicomprisk(formula, data, cause = c(1, 1), cens = 0, causes, indiv,
  strata = NULL, id, num, max.clust = 1000, marg = NULL,
  se.clusters = NULL, wname = NULL, prodlim = FALSE, messages = TRUE,
  model, return.data = 0, uniform = 0, conservative = 1,
  resample.iid = 1, ...)

Arguments

formula
Formula with left-hand-side being a Event object (see example below) and the left-hand-side specying the covariate structure
data
Data frame
cause
Causes (default (1,1)) for which to estimate the bivariate cumulative incidence
cens
The censoring code
causes
causes
indiv
indiv
strata
Strata
id
Clustering variable
num
num
max.clust
max number of clusters in comp.risk call for iid decompostion, max.clust=NULL uses all clusters otherwise rougher grouping.
marg
marginal cumulative incidence to make stanard errors for same clusters for subsequent use in casewise.test()
se.clusters
to specify clusters for standard errors. Either a vector of cluster indices or a column name in data. Defaults to the id variable.
wname
name of additonal weight used for paired competing risks data.
prodlim
prodlim to use prodlim estimator (Aalen-Johansen) rather than IPCW weighted estimator based on comp.risk function.These are equivalent in the case of no covariates. These esimators are the same in the case of stratified fitting.
messages
Control amount of output
model
Type of competing risk model (default is Fine-Gray model "fg", see comp.risk).
return.data
Should data be returned (skipping modeling)
uniform
to compute uniform standard errors for concordance estimates based on resampling.
conservative
for conservative standard errors, recommended for larger data-sets.
resample.iid
to return iid residual processes for further computations such as tests.
...
Additional arguments to comp.risk function

Examples

Run this code
library("timereg")

## Simulated data example 
prt <- simnordic.random(2000,delayed=TRUE,ptrunc=0.7,
	      cordz=0.5,cormz=2,lam0=0.3)
## Bivariate competing risk, concordance estimates
p11 <- bicomprisk(Event(time,cause)~strata(zyg)+id(id),data=prt,cause=c(1,1))
 
p11mz <- p11$model$"MZ"
p11dz <- p11$model$"DZ"
par(mfrow=c(1,2))
## Concordance
plot(p11mz,ylim=c(0,0.1)); 
plot(p11dz,ylim=c(0,0.1)); 

## entry time, truncation weighting 
### other weighting procedure 
prtl <-  prt[!prt$truncated,] 
prt2 <- ipw2(prtl,cluster="id",same.cens=TRUE,
     time="time",cause="cause",entrytime="entry",
     pairs=TRUE,strata="zyg",obs.only=TRUE)

prt22 <- fast.reshape(prt2,id="id")

prt22$event <- (prt22$cause1==1)*(prt22$cause2==1)*1
prt22$timel <- pmax(prt22$time1,prt22$time2)
ipwc <- comp.risk(Event(timel,event)~-1+factor(zyg1),
  data=prt22,cause=1,n.sim=0,model="rcif2",times=50:90,
  weights=prt22$weights1,cens.weights=rep(1,nrow(prt22)))

p11wmz <- ipwc$cum[,2] 
p11wdz <- ipwc$cum[,3]
lines(ipwc$cum[,1],p11wmz,col=3)
lines(ipwc$cum[,1],p11wdz,col=3)

Run the code above in your browser using DataLab