Learn R Programming

mets (version 1.2)

ipw2: Inverse Probability of Censoring Weights

Description

Internal function. Calculates Inverse Probability of Censoring and Truncation Weights and adds them to a data.frame

Usage

ipw2(data, times = NULL, entrytime = NULL, time = "time",
  cause = "cause", same.cens = FALSE, cluster = NULL, pairs = FALSE,
  strata = NULL, obs.only = TRUE, cens.formula = NULL, cens.code = 0,
  pair.cweight = "pcw", pair.tweight = "ptw", pair.weight = "weights",
  cname = "cweights", tname = "tweights", weight.name = "indi.weights",
  prec.factor = 100)

Arguments

data
data frame
times
possible time argument for speciying a maximum value of time tau=max(times), to specify when things are considered censored or not.
entrytime
nam of entry-time for truncation.
time
name of time variable on data frame.
cause
name of cause indicator on data frame.
same.cens
For clustered data, should same censoring be assumed and same truncation (bivariate probability calculated as mininum of the marginal probabilities)
cluster
name of clustering variable
pairs
For paired data (e.g. twins) only the complete pairs are returned (With pairs=TRUE)
strata
name of strata variable to get weights stratified.
obs.only
Return data with uncensored observations only
cens.formula
model for Cox models for truncation and right censoring times.
cens.code
censoring.code
pair.cweight
Name of weight variable in the new data.frame for right censorig of pairs
pair.tweight
Name of weight variable in the new data.frame for left truncation of pairs
pair.weight
Name of weight variable in the new data.frame for right censoring and left truncation of pairs
cname
Name of weight variable in the new data.frame for right censoring of individuals
tname
Name of weight variable in the new data.frame for left truncation of individuals
weight.name
Name of weight variable in the new data.frame for right censoring and left truncation of individuals
prec.factor
To let tied censoring and truncation times come after the death times.
...
Additional arguments to censoring model

Examples

Run this code
library("timereg")
d <- simnordic.random(3000,delayed=TRUE,ptrunc=0.7,
      cordz=0.5,cormz=2,lam0=0.3,country=FALSE)
d$strata <- as.numeric(d$country)+(d$zyg=="MZ")*4
times <- seq(60,100,by=10)
c1 <- comp.risk(Event(time,cause)~1+cluster(id),data=d,cause=1,
	model="fg",times=times,max.clust=NULL,n.sim=0)
mm=model.matrix(~-1+zyg,data=d)
out1<-random.cif(c1,data=d,cause1=1,cause2=1,same.cens=TRUE,theta.des=mm)
summary(out1)
pc1 <- predict(c1,X=1,se=0)
plot(pc1)

dl <- d[!d$truncated,]
dl <- ipw2(dl,cluster="id",same.cens=TRUE,time="time",entrytime="entry",cause="cause",
           strata="strata",prec.factor=100)
cl <- comp.risk(Event(time,cause)~+1+
		cluster(id),
		data=dl,cause=1,model="fg",
		weights=dl$indi.weights,cens.weights=rep(1,nrow(dl)),
            times=times,max.clust=NULL,n.sim=0)
pcl <- predict(cl,X=1,se=0)
lines(pcl$time,pcl$P1,col=2)
mm=model.matrix(~-1+factor(zyg),data=dl)
out2<-random.cif(cl,data=dl,cause1=1,cause2=1,theta.des=mm,
                 weights=dl$weights,censoring.weights=rep(1,nrow(dl)))
summary(out2)

Run the code above in your browser using DataLab