Learn R Programming

mets (version 1.2)

phreg: Fast Cox PH regression

Description

Fast Cox PH regression

Usage

phreg(formula, data, ...)

Arguments

formula
formula with 'Surv' outcome (see coxph)
data
data frame
...
Additional arguments to lower level funtions

Examples

Run this code
simcox <- function(n=1000, seed=1, beta=c(1,1), entry=TRUE) {
  if (!is.null(seed))
    set.seed(seed)
  library(lava)
  m <- lvm()
  regression(m,T~X1+X2) <- beta
  distribution(m,~T+C) <- coxWeibull.lvm(scale=1/100)
  distribution(m,~entry) <- coxWeibull.lvm(scale=1/10)
  m <- eventTime(m,time~min(T,C=0),"status")
  d <- sim(m,n);
  if (!entry) d$entry <- 0
  else d <- subset(d, time>entry,select=-c(T,C))
  return(d)
}
## Not run: ------------------------------------
# n <- 10;
# d <- mets:::simCox(n); d$id <- seq(nrow(d)); d$group <- factor(rbinom(nrow(d),1,0.5))
# 
# (m1 <- phreg(Surv(entry,time,status)~X1+X2,data=d))
# (m2 <- coxph(Surv(entry,time,status)~X1+X2+cluster(id),data=d))
# (coef(m3 <-cox.aalen(Surv(entry,time,status)~prop(X1)+prop(X2),data=d)))
# 
# 
# (m1b <- phreg(Surv(entry,time,status)~X1+X2+strata(group),data=d))
# (m2b <- coxph(Surv(entry,time,status)~X1+X2+cluster(id)+strata(group),data=d))
# (coef(m3b <-cox.aalen(Surv(entry,time,status)~-1+group+prop(X1)+prop(X2),data=d)))
# 
# m <- phreg(Surv(entry,time,status)~X1*X2+strata(group)+cluster(id),data=d)
# m
# plot(m,ylim=c(0,1))
## ---------------------------------------------

Run the code above in your browser using DataLab