interval.logitsurv.discrete(
formula,
data,
beta = NULL,
no.opt = FALSE,
method = "NR",
stderr = TRUE,
weights = NULL,
offsets = NULL,
exp.link = 1,
increment = 1,
...
)
formula
data
starting values
optimization TRUE/FALSE
NR, nlm
to return only estimate
weights following id for GLM
following id for GLM
parametrize increments exp(alpha) > 0
using increments dG(t)=exp(alpha) as parameters
Additional arguments to lower level funtions lava::NR optimizer or nlm
Thomas Scheike
This is thus also the cumulative odds model, since
The baseline
Input are intervals given by ]t_l,t_r] where t_r can be infinity for right-censored intervals When truly discrete ]0,1] will be an observation at 1, and ]j,j+1] will be an observation at j+1
Likelihood is maximized:
data(ttpd)
dtable(ttpd,~entry+time2)
out <- interval.logitsurv.discrete(Interval(entry,time2)~X1+X2+X3+X4,ttpd)
summary(out)
pred <- predictlogitSurvd(out,se=FALSE)
plotSurvd(pred)
Run the code above in your browser using DataLab