50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

mets (version 1.3.3)

interval.logitsurv.discrete: Discrete time to event interval censored data

Description

logit(P(T>t|x))=log(G(t))+xβ P(T>t|x)=11+G(t)exp(xβ)

Usage

interval.logitsurv.discrete(
  formula,
  data,
  beta = NULL,
  no.opt = FALSE,
  method = "NR",
  stderr = TRUE,
  weights = NULL,
  offsets = NULL,
  exp.link = 1,
  increment = 1,
  ...
)

Arguments

formula

formula

data

data

beta

starting values

no.opt

optimization TRUE/FALSE

method

NR, nlm

stderr

to return only estimate

weights

weights following id for GLM

offsets

following id for GLM

exp.link

parametrize increments exp(alpha) > 0

increment

using increments dG(t)=exp(alpha) as parameters

...

Additional arguments to lower level funtions lava::NR optimizer or nlm

Author

Thomas Scheike

Details

This is thus also the cumulative odds model, since P(Tt|x)=G(t)exp(xβ)1+G(t)exp(xβ)

The baseline G(t) is written as cumsum(exp(α)) and this is not the standard parametrization that takes log of G(t) as the parameters.

Input are intervals given by ]t_l,t_r] where t_r can be infinity for right-censored intervals When truly discrete ]0,1] will be an observation at 1, and ]j,j+1] will be an observation at j+1

Likelihood is maximized: P(Ti>til|x)P(Ti>tir|x)

Examples

Run this code
data(ttpd) 
dtable(ttpd,~entry+time2)
out <- interval.logitsurv.discrete(Interval(entry,time2)~X1+X2+X3+X4,ttpd)
summary(out)

pred <- predictlogitSurvd(out,se=FALSE)
plotSurvd(pred)

Run the code above in your browser using DataLab