Last chance! 50% off unlimited learning
Sale ends in
.. content for description (no empty lines) ..
casewise(conc, marg, cause.marg)
Concordance
Marginal estimate
specififes which cause that should be used for marginal cif based on prodlim
Thomas Scheike
## Reduce Ex.Timings
library(prodlim)
data(prt);
prt <- force.same.cens(prt,cause="status")
### marginal cumulative incidence of prostate cancer##'
outm <- prodlim(Hist(time,status)~+1,data=prt)
times <- 60:100
cifmz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="MZ")) ## cause is 2 (second cause)
cifdz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="DZ"))
### concordance for MZ and DZ twins
cc <- bicomprisk(Event(time,status)~strata(zyg)+id(id),data=prt,cause=c(2,2),prodlim=TRUE)
cdz <- cc$model$"DZ"
cmz <- cc$model$"MZ"
cdz <- casewise(cdz,outm,cause.marg=2)
cmz <- casewise(cmz,outm,cause.marg=2)
plot(cmz,ci=NULL,ylim=c(0,0.5),xlim=c(60,100),legend=TRUE,col=c(3,2,1))
par(new=TRUE)
plot(cdz,ci=NULL,ylim=c(0,0.5),xlim=c(60,100),legend=TRUE)
summary(cdz)
summary(cmz)
Run the code above in your browser using DataLab