Last chance! 50% off unlimited learning
Sale ends in
Bias corrected estimates for the generalized extreme value distribution using Firth's modified score function or implicit bias subtraction.
gev.bcor(par, dat, corr = c("subtract", "firth"), method = c("obs", "exp"))
vector of bias-corrected parameters
parameter vector (scale
, shape
)
sample of observations
string indicating which correction to employ either subtract
or firth
string indicating whether to use the expected ('exp'
) or the observed ('obs'
--- the default) information matrix. Used only if corr='firth'
Method subtract
solves
gev.bias
.
The alternative is to use Firth's modified score and find the root of
The routine uses the MLE (bias-corrected) as starting values and proceeds
to find the solution using a root finding algorithm.
Since the bias-correction is not valid for NA
as the solution does not exist then.
set.seed(1)
dat <- mev::rgev(n=40, loc = 1, scale=1, shape=-0.2)
par <- mev::fit.gev(dat)$estimate
gev.bcor(par, dat, 'subtract')
gev.bcor(par, dat, 'firth') #observed information
gev.bcor(par, dat, 'firth','exp')
Run the code above in your browser using DataLab