Generate from
rmevspec(
n,
d,
param,
sigma,
model = c("log", "neglog", "bilog", "negbilog", "hr", "br", "xstud", "smith",
"schlather", "ct", "sdir", "dirmix", "pairbeta", "pairexp", "wdirbs", "wexpbs",
"maxlin"),
weights = NULL,
vario = NULL,
coord = NULL,
grid = FALSE,
dist = NULL,
...
)
an n
by d
exact sample from the corresponding multivariate extreme value model
number of observations
dimension of sample
parameter vector for the logistic, bilogistic, negative bilogistic and extremal Dirichlet (Coles and Tawn) model. Parameter matrix for the Dirichlet mixture. Degree of freedoms for extremal student model. See Details.
covariance matrix for Brown-Resnick and extremal Student-t distributions. Symmetric matrix of squared coefficients
for multivariate extreme value distributions, users can choose between 1-parameter logistic and negative logistic, asymmetric logistic and negative logistic, bilogistic, Husler-Reiss, extremal Dirichlet model (Coles and Tawn) or the Dirichlet mixture. Spatial models include the Brown-Resnick, Smith, Schlather and extremal Student max-stable processes. Max linear models are also supported
vector of length m
for the m
mixture components that sum to one. For the "maxlin"
model, weights should be a matrix with d
columns that represent the weight of the components and whose column sum to one (if provided, this argument overrides asy
).
semivariogram function whose first argument must be distance. Used only if provided in conjunction with coord
and if sigma
is missing
d
by k
matrix of coordinates, used as input in the variogram vario
or as parameter for the Smith model. If grid
is TRUE
, unique entries should be supplied.
Logical. TRUE
if the coordinates are two-dimensional grid points (spatial models).
symmetric matrix of pairwise distances. Default to NULL
.
additional arguments for the vario
function
Leo Belzile
The vector param differs depending on the model
log
: one dimensional parameter greater than 1
neglog
: one dimensional positive parameter
bilog
: d
-dimensional vector of parameters in
negbilog
: d
-dimensional vector of negative parameters
ct
, dir
, negdir
: d
-dimensional vector of positive (a)symmetry parameters. Alternatively, a d
Dirichlet parameters and the last entry is an index of regular variation in
xstud
: one dimensional parameter corresponding to degrees of freedom alpha
dirmix
: d
by m
-dimensional matrix of positive (a)symmetry parameters
pairbeta, pairexp
: d(d-1)/2+1
vector of parameters, containing the concentration parameter and the coefficients of the pairwise beta, in lexicographical order e.g.,
wdirbs, wexpbs
: 2d
vector of d
concentration parameters followed by the d
Dirichlet parameters
Dombry, Engelke and Oesting (2016). Exact simulation of max-stable processes, Biometrika, 103(2), 303--317.
Boldi (2009). A note on the representation of parametric models for multivariate extremes. Extremes 12, 211--218.
set.seed(1)
rmevspec(n=100, d=3, param=2.5, model='log')
rmevspec(n=100, d=3, param=2.5, model='neglog')
rmevspec(n=100, d=4, param=c(0.2,0.1,0.9,0.5), model='bilog')
rmevspec(n=100, d=2, param=c(0.8,1.2), model='ct') #Dirichlet model
rmevspec(n=100, d=2, param=c(0.8,1.2,0.5), model='sdir') #with additional scale parameter
#Variogram gamma(h) = scale*||h||^alpha
#NEW: Variogram must take distance as argument
vario <- function(x, scale=0.5, alpha=0.8){ scale*x^alpha }
#grid specification
grid.coord <- as.matrix(expand.grid(runif(4), runif(4)))
rmevspec(n=100, vario=vario,coord=grid.coord, model='br')
## Example with Dirichlet mixture
alpha.mat <- cbind(c(2,1,1),c(1,2,1),c(1,1,2))
rmevspec(n=100, param=alpha.mat, weights=rep(1/3,3), model='dirmix')
Run the code above in your browser using DataLab