Density function, distribution function, quantile function and random number generation for various extended generalized Pareto distributions
pegp(
q,
scale,
shape,
kappa,
model = c("pt-beta", "pt-gamma", "pt-power", "gj-tnorm", "gj-beta", "exptilt",
"logist"),
lower.tail = TRUE,
log.p = FALSE
)degp(
x,
scale,
shape,
kappa,
model = c("pt-beta", "pt-gamma", "pt-power", "gj-tnorm", "gj-beta", "exptilt",
"logist"),
log = FALSE
)
qegp(
p,
scale,
shape,
kappa,
model = c("pt-beta", "pt-gamma", "pt-power", "gj-tnorm", "gj-beta", "exptilt",
"logist"),
lower.tail = TRUE,
log.p = FALSE
)
regp(
n,
scale,
shape,
kappa,
model = c("pt-beta", "pt-gamma", "pt-power", "gj-tnorm", "gj-beta", "exptilt",
"logist")
)
scale parameter, strictly positive.
shape parameter.
shape parameter for the tilting distribution.
string giving the distribution of the model
logical; if TRUE (default), the lower tail probability \(\Pr(X \leq x)\) is returned.
logical; if FALSE (default), values are returned on the probability scale.
vector of quantiles
vector of probabilities
scalar number of observations
Papastathopoulos, I. and J. Tawn (2013). Extended generalised Pareto models for tail estimation, Journal of Statistical Planning and Inference 143(3), 131--143, <doi:10.1016/j.jspi.2012.07.001>.
Gamet, P. and Jalbert, J. (2022). A flexible extended generalized Pareto distribution for tail estimation. Environmetrics, 33(6), <doi:10.1002/env.2744>.