Learn R Programming

mev (version 2.1)

kjtail: Estimators of the tail coefficient

Description

Estimators proposed by Krupskii and Joe under second order expansion for the coefficient of tail dependence \(\eta\) and the joint tail orthant probability

Usage

kjtail(
  xdat,
  qlev,
  ptail = NULL,
  mqu = NULL,
  type = 1,
  ties.method = eval(formals(rank)$ties.method),
  ...
)

Value

a list with elements

  • p quantile level for estimation

  • eta matrix of estimated coefficient of tail dependence \(\eta\), and standard errors

  • k1 parameter of the tail expansion

  • pat proportion of observations above the threshold

  • lambda tail dependence coefficient (sic)

  • tailprob tail probability, if ptail is provided

Arguments

xdat

a matrix of observations

qlev

vector of quantile levels

ptail

tail probability smaller than qlev. Default to NULL

mqu

marginal quantile levels for semiparametric estimation; data above this are modelled using a generalized Pareto distribution. If NULL, empirical estimation is used throughout

type

integer indicating the estimator type

ties.method

method for handling of ties in rank transformation

...

additional arguments, for backward compatibility

Examples

Run this code
d <- 2
rho <- 0.9
Sigma <- matrix(rho, d, d) + diag(1 - rho, d)
eta_true <- 1/sum(Sigma)
data <- rmnorm(
   n = 1e4,
   mu = rep(0, d),
  Sigma = Sigma)
q <- seq(0.95, 0.995, by = 0.005)
kj <- kjtail(xdat = data, qlev = q)
plot(kj)
abline(h = (1+rho)/2, col = 2)

Run the code above in your browser using DataLab