Given: \(\rho = \frac{1}{2}d\), \(I_d\) is the identity matrix of size \(d \times d\), \(J_d\) is the matrix of ones of size \(d \times d\).
Simulates \(n\) points from \(Joint-Normal(X, Y) \in \mathbf{R}^d \times \mathbf{R}^d\), where:
$$(X, Y) \sim {N}(0, \Sigma)$$,
$$\Sigma = \left[I_d, \rho J_d; \rho J_d , (1 + \epsilon\kappa)I_d\right]$$
and \(\kappa = 1\textrm{ if }d = 1, \textrm{ and 0 otherwise}\) controls the noise for higher dimensions.
For more details see the help vignette:
vignette("sims", package = "mgc")