# NOT RUN {
## see ?gam
## cyclic example ...
  require(mgcv)
  set.seed(6)
  x <- sort(runif(200)*10)
  z <- runif(200)
  f <- sin(x*2*pi/10)+.5
  y <- rpois(exp(f),exp(f)) 
## finished simulating data, now fit model...
  b <- gam(y ~ s(x,bs="cp") + s(z,bs="ps"),family=poisson)
## example with supplied knot ranges for x and z (can do just one)
  b <- gam(y ~ s(x,bs="cp") + s(z,bs="ps"),family=poisson,
           knots=list(x=c(0,10),z=c(0,1))) 
## example with supplied knots...
  bk <- gam(y ~ s(x,bs="cp",k=12) + s(z,bs="ps",k=13),family=poisson,
                      knots=list(x=seq(0,10,length=13),z=(-3):13/10))
## plot results...
  par(mfrow=c(2,2))
  plot(b,select=1,shade=TRUE);lines(x,f-mean(f),col=2)
  plot(b,select=2,shade=TRUE);lines(z,0*z,col=2)
  plot(bk,select=1,shade=TRUE);lines(x,f-mean(f),col=2)
  plot(bk,select=2,shade=TRUE);lines(z,0*z,col=2)
  
## Example using montonic constraints via the SCOP-spline
## construction, and of computng derivatives...
  x <- seq(0,1,length=100); dat <- data.frame(x)
  sspec <- s(x,bs="ps")
  sspec$mono <- 1
  sm <- smoothCon(sspec,dat)[[1]]
  sm$deriv <- 1
  Xd <- PredictMat(sm,dat)
## generate random coeffients in the unconstrainted 
## parameterization...
  b <- runif(10)*3-2.5
## exponentiate those parameters indicated by sm$g.index 
## to obtain coefficients meeting the constraints...
  b[sm$g.index] <- exp(b[sm$g.index]) 
## plot monotonic spline and its derivative
  par(mfrow=c(2,2))
  plot(x,sm$X%*%b,type="l",ylab="f(x)")
  plot(x,Xd%*%b,type="l",ylab="f'(x)")
## repeat for decrease...
  sspec$mono <- -1
  sm1 <- smoothCon(sspec,dat)[[1]]
  sm1$deriv <- 1
  Xd1 <- PredictMat(sm1,dat)
  plot(x,sm1$X%*%b,type="l",ylab="f(x)")
  plot(x,Xd1%*%b,type="l",ylab="f'(x)")
## Now with sum to zero constraints as well...
  sspec$mono <- 1
  sm <- smoothCon(sspec,dat,absorb.cons=TRUE)[[1]]
  sm$deriv <- 1
  Xd <- PredictMat(sm,dat)
  b <- b[-1] ## dropping first param
  plot(x,sm$X%*%b,type="l",ylab="f(x)")
  plot(x,Xd%*%b,type="l",ylab="f'(x)")
  
  sspec$mono <- -1
  sm1 <- smoothCon(sspec,dat,absorb.cons=TRUE)[[1]]
  sm1$deriv <- 1
  Xd1 <- PredictMat(sm1,dat)
  plot(x,sm1$X%*%b,type="l",ylab="f(x)")
  plot(x,Xd1%*%b,type="l",ylab="f'(x)")
  
# }
Run the code above in your browser using DataLab