```
# NOT RUN {
library(mgcv)
## Load Columbus Ohio crime data (see ?columbus for details and credits)
data(columb) ## data frame
data(columb.polys) ## district shapes list
xt <- list(polys=columb.polys) ## neighbourhood structure info for MRF
par(mfrow=c(2,2))
## First a full rank MRF...
b <- gam(crime ~ s(district,bs="mrf",xt=xt),data=columb,method="REML")
plot(b,scheme=1)
## Compare to reduced rank version...
b <- gam(crime ~ s(district,bs="mrf",k=20,xt=xt),data=columb,method="REML")
plot(b,scheme=1)
## An important covariate added...
b <- gam(crime ~ s(district,bs="mrf",k=20,xt=xt)+s(income),
data=columb,method="REML")
plot(b,scheme=c(0,1))
## plot fitted values by district
par(mfrow=c(1,1))
fv <- fitted(b)
names(fv) <- as.character(columb$district)
polys.plot(columb.polys,fv)
## Examine an example neighbourhood list - this one auto-generated from
## 'polys' above.
nb <- b$smooth[[1]]$xt$nb
head(nb)
names(nb) ## these have to match the factor levels of the smooth
## look at the indices of the neighbours of the first entry,
## named '0'...
nb[['0']] ## by name
nb[[1]] ## same by index
## ... and get the names of these neighbours from their indices...
names(nb)[nb[['0']]]
b1 <- gam(crime ~ s(district,bs="mrf",k=20,xt=list(nb=nb))+s(income),
data=columb,method="REML")
b1 ## fit unchanged
plot(b1) ## but now there is no information with which to plot the mrf
# }
```

Run the code above in your browser using DataLab