Last chance! 50% off unlimited learning
Sale ends in
The gumbls
family implements Gumbel location scale additive models in which the location and scale parameters (see details) can depend on additive smooth predictors. Useable only with gam
, the linear predictors are specified via a list of formulae.
gumbls(link=list("identity","log"),b=-7)
two item list specifying the link for the location
The minumum log scale parameter.
An object inheriting from class general.family
.
Let
gumbls
is used with gam
to fit Gumbel location - scale models parameterized in terms of scale parameter identity
link for the scale parameter means that the corresponding linear predictor gives log
link for the scale parameter simply forces the log scale parameter to have a lower limit given by argument b
: if
gam
is called with
a list containing 2 formulae, the first specifies the response on the left hand side and the structure of the linear predictor for location parameter,
The fitted values for this family will be a two column matrix. The first column is the mean, and the second column is the log scale parameter, predict.gam
will also produce 2 column matrices for type
"link"
and "response"
. The first column is on the original data scale when type="response"
and on the log mean scale of the linear predictor when type="link"
. The second column when type="response"
is again the log scale parameter, but is on the linear predictor when type="link"
.
Wood, S.N., N. Pya and B. Saefken (2016), Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association 111, 1548-1575 10.1080/01621459.2016.1180986
# NOT RUN {
library(mgcv)
## simulate some data
f0 <- function(x) 2 * sin(pi * x)
f1 <- function(x) exp(2 * x)
f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 *
(10 * x)^3 * (1 - x)^10
n <- 400;set.seed(9)
x0 <- runif(n);x1 <- runif(n);
x2 <- runif(n);x3 <- runif(n);
mu <- f0(x0)+f1(x1)
beta <- exp(f2(x2)/5)
y <- mu - beta*log(-log(runif(n))) ## Gumbel quantile function
b <- gam(list(y~s(x0)+s(x1),~s(x2)+s(x3)),family=gumbls)
plot(b,pages=1,scale=0)
summary(b)
gam.check(b)
# }
Run the code above in your browser using DataLab