```
# NOT RUN {
library(mgcv)
## simple examples using gamm as alternative to gam
set.seed(0)
dat <- gamSim(1,n=200,scale=2)
b <- gamm(y~s(x0)+s(x1)+s(x2)+s(x3),data=dat)
plot(b$gam,pages=1)
summary(b$lme) # details of underlying lme fit
summary(b$gam) # gam style summary of fitted model
anova(b$gam)
gam.check(b$gam) # simple checking plots
b <- gamm(y~te(x0,x1)+s(x2)+s(x3),data=dat)
op <- par(mfrow=c(2,2))
plot(b$gam)
par(op)
rm(dat)
## Add a factor to the linear predictor, to be modelled as random
dat <- gamSim(6,n=200,scale=.2,dist="poisson")
b2 <- gamm(y~s(x0)+s(x1)+s(x2),family=poisson,
data=dat,random=list(fac=~1))
plot(b2$gam,pages=1)
fac <- dat$fac
rm(dat)
vis.gam(b2$gam)
## In the generalized case the 'gam' object is based on the working
## model used in the PQL fitting. Residuals for this are not
## that useful on their own as the following illustrates...
gam.check(b2$gam)
## But more useful residuals are easy to produce on a model
## by model basis. For example...
fv <- exp(fitted(b2$lme)) ## predicted values (including re)
rsd <- (b2$gam$y - fv)/sqrt(fv) ## Pearson residuals (Poisson case)
op <- par(mfrow=c(1,2))
qqnorm(rsd);plot(fv^.5,rsd)
par(op)
## now an example with autocorrelated errors....
n <- 200;sig <- 2
x <- 0:(n-1)/(n-1)
f <- 0.2*x^11*(10*(1-x))^6+10*(10*x)^3*(1-x)^10
e <- rnorm(n,0,sig)
for (i in 2:n) e[i] <- 0.6*e[i-1] + e[i]
y <- f + e
op <- par(mfrow=c(2,2))
## Fit model with AR1 residuals
b <- gamm(y~s(x,k=20),correlation=corAR1())
plot(b$gam);lines(x,f-mean(f),col=2)
## Raw residuals still show correlation, of course...
acf(residuals(b$gam),main="raw residual ACF")
## But standardized are now fine...
acf(residuals(b$lme,type="normalized"),main="standardized residual ACF")
## compare with model without AR component...
b <- gam(y~s(x,k=20))
plot(b);lines(x,f-mean(f),col=2)
## more complicated autocorrelation example - AR errors
## only within groups defined by `fac'
e <- rnorm(n,0,sig)
for (i in 2:n) e[i] <- 0.6*e[i-1]*(fac[i-1]==fac[i]) + e[i]
y <- f + e
b <- gamm(y~s(x,k=20),correlation=corAR1(form=~1|fac))
plot(b$gam);lines(x,f-mean(f),col=2)
par(op)
## more complex situation with nested random effects and within
## group correlation
set.seed(0)
n.g <- 10
n<-n.g*10*4
## simulate smooth part...
dat <- gamSim(1,n=n,scale=2)
f <- dat$f
## simulate nested random effects....
fa <- as.factor(rep(1:10,rep(4*n.g,10)))
ra <- rep(rnorm(10),rep(4*n.g,10))
fb <- as.factor(rep(rep(1:4,rep(n.g,4)),10))
rb <- rep(rnorm(4),rep(n.g,4))
for (i in 1:9) rb <- c(rb,rep(rnorm(4),rep(n.g,4)))
## simulate auto-correlated errors within groups
e<-array(0,0)
for (i in 1:40) {
eg <- rnorm(n.g, 0, sig)
for (j in 2:n.g) eg[j] <- eg[j-1]*0.6+ eg[j]
e<-c(e,eg)
}
dat$y <- f + ra + rb + e
dat$fa <- fa;dat$fb <- fb
## fit model ....
b <- gamm(y~s(x0,bs="cr")+s(x1,bs="cr")+s(x2,bs="cr")+
s(x3,bs="cr"),data=dat,random=list(fa=~1,fb=~1),
correlation=corAR1())
plot(b$gam,pages=1)
summary(b$gam)
vis.gam(b$gam)
## Prediction from gam object, optionally adding
## in random effects.
## Extract random effects and make names more convenient...
refa <- ranef(b$lme,level=5)
rownames(refa) <- substr(rownames(refa),start=9,stop=20)
refb <- ranef(b$lme,level=6)
rownames(refb) <- substr(rownames(refb),start=9,stop=20)
## make a prediction, with random effects zero...
p0 <- predict(b$gam,data.frame(x0=.3,x1=.6,x2=.98,x3=.77))
## add in effect for fa = "2" and fb="2/4"...
p <- p0 + refa["2",1] + refb["2/4",1]
## and a "spatial" example...
library(nlme);set.seed(1);n <- 100
dat <- gamSim(2,n=n,scale=0) ## standard example
attach(dat)
old.par<-par(mfrow=c(2,2))
contour(truth$x,truth$z,truth$f) ## true function
f <- data$f ## true expected response
## Now simulate correlated errors...
cstr <- corGaus(.1,form = ~x+z)
cstr <- Initialize(cstr,data.frame(x=data$x,z=data$z))
V <- corMatrix(cstr) ## correlation matrix for data
Cv <- chol(V)
e <- t(Cv) %*% rnorm(n)*0.05 # correlated errors
## next add correlated simulated errors to expected values
data$y <- f + e ## ... to produce response
b<- gamm(y~s(x,z,k=50),correlation=corGaus(.1,form=~x+z),
data=data)
plot(b$gam) # gamm fit accounting for correlation
# overfits when correlation ignored.....
b1 <- gamm(y~s(x,z,k=50),data=data);plot(b1$gam)
b2 <- gam(y~s(x,z,k=50),data=data);plot(b2)
par(old.par)
# }
```

Run the code above in your browser using DataCamp Workspace