Learn R Programming

mgcv (version 1.9-4)

gam.outer: Minimize GCV or UBRE score of a GAM using `outer' iteration

Description

Estimation of GAM smoothing parameters is most stable if optimization of the smoothness selection score (GCV, GACV, UBRE/AIC, REML, ML etc) is outer to the penalized iteratively re-weighted least squares scheme used to estimate the model given smoothing parameters.

This routine optimizes a smoothness selection score in this way. Basically the score is evaluated for each trial set of smoothing parameters by estimating the GAM for those smoothing parameters. The score is minimized w.r.t. the parameters numerically, using newton (default), bfgs, optim or nlm. Exact (first and second) derivatives of the score can be used by fitting with gam.fit3. This improves efficiency and reliability relative to relying on finite difference derivatives.

Not normally called directly, but rather a service routine for gam.

Usage

gam.outer(lsp,fscale,family,control,method,optimizer,
          criterion,scale,gamma,G,start=NULL,nei=NULL,...)

Arguments

Details

See Wood (2008) for full details on `outer iteration'.

References

Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73(1):3-36

See Also

gam.fit3, gam, magic