Learn R Programming

mgwrsar (version 0.1-1)

MGWR: MGWR to be documented

Description

MGWR to be documented

Usage

MGWR(Y,XC,XV,S,H, kernels, type = "GD",model='MGWR', minv = 1,
maxknn = 500, NmaxDist = 6000,SE=FALSE, isgcv, TIME, decay,
interceptv=TRUE,W=NULL,betacor=FALSE,remove_local_outlier=FALSE,
outv=0,doMC=FALSE,ncore=1,Wh=NULL,xratiomin=10e-10)

Arguments

Y

A vector

XC

A matrix with covariates with stationnary parameters

XV

A matrix with covariates with spatially varying parameters

S

A matrix with variables used in kernel

H

A vector of bandwidths

kernels

A vector of kernel types

type

Type of Genelarized kernel product ('GD' only spatial,'GDC' spatial + a categorical variable,'GDX' spatial + a continuous variable,'GDT' spatial + a time index, and other combination 'GDXXC','GDTX',...)

model

A mgwrsar model type (see MGWRSAR)

minv

Minimum number of non null weight

maxknn

If n >NmaxDist how many column with dense weight matrix (max number of neighbours)

NmaxDist

Maximum number of observation for computing dense weight matrix

SE

If standard error are computed

isgcv

leave one out cross validation, default FALSE.

TIME

Use rigth truncated kernel for time index kernel

decay

time decay

interceptv

Intercept spatially varying, default FALSE

W

A weight matrix for spatial autocorrelation

betacor

Do a tuncation of spatial autocorelation if absolute value larger than 1.

remove_local_outlier

Remove local outlier

outv

A treshold for removing local outlier

doMC

doParallel parallelization

ncore

Number of cores for parallelization

Wh

A matrix of weights for local estimation

xratiomin

A treshold parameters for removing obs with not enough positive weigths for local regression

Value

a list of object for MGWRSAR wrapper