Learn R Programming

mhazard (version 0.2.3)

mHR2: Cox regression for a bivariate outcome

Description

Fits a semiparametric Cox regression model for a bivariate outcome. This function computes the regression coefficients, baseline hazards, and sandwich estimates of the standard deviation of the regression coefficients. If desired, estimates of the survival function F and marginal hazard rates Lambda11 can be computed using the mHR2.LF function.

Usage

mHR2(Y1, Y2, Delta1, Delta2, X)

Value

A list containing the following elements:

Y1, Y2:

Original vectors of event times

Delta1, Delta2:

Original vectors of censoring indicators

X:

Original covariate matrix

n10, n01:

Total number of events for the first/second outcome

n11:

Total number of double events

beta10, beta01, beta11:

Regression coefficient estimates

lambda10, lambda01, lambda11:

Baseline hazard estimates

SD.beta10, SD.beta01, SD.beta11:

Sandwich estimates of the standard deviation of the regression coefficients

SD.beta10.cox, SD.beta01.cox:

Standard deviation estimates for the regression coefficients based on a univariate Cox model

Arguments

Y1, Y2

Vectors of event times (continuous).

Delta1, Delta2

Vectors of censoring indicators (1=event, 0=censored).

X

Matrix of covariates (continuous or binary).

References

Prentice, R., Zhao, S. "The statistical analysis of multivariate failure time data: A marginal modeling approach", CRC Press (2019). Prentice, R., Zhao, S. "Regression models and multivariate life tables", Journal of the American Statistical Association (2021) 116(535): 1330-1345. https://doi.org/10.1080/01621459.2020.1713792

See Also

mHR2.LF

Examples

Run this code
x <- genClaytonReg(1000, 2, 0.5, 1, 1, log(2), log(2), log(8/3), 2, 2)
x.mHR2 <- mHR2(x$Y1, x$Y2, x$Delta1, x$Delta2, x$X)

Run the code above in your browser using DataLab