Learn R Programming

⚠️There's a newer version (1.1) of this package.Take me there.

mi (version 0.10-1)

Missing Data Imputation and Model Checking

Description

R functions for performing multiple imputation with several checks.

Copy Link

Version

Install

install.packages('mi')

Monthly Downloads

25,787

Version

0.10-1

License

GPL (>= 2)

Maintainer

YuSung Su

Last Published

April 6th, 2015

Functions in mi (0.10-1)

mi.hist

Multiple Imputation Histogram
mi.fixed

Elementary function: imputation of constant variable.
mi.method

Virtual class for all mi classes.
mi.scatterplot

Multiple Imputation Scatterplot
mi

Multiple Iterative Regression Imputation
missing.pattern.plot

Missing Pattern Plot
mi.preprocess

Preproessing and Postprocessing mi data object
mi.binary

Elementary function: Bayesian logistic regression to impute a binary variable.
convergence.plot

Convergence Plot of mi Object
CHAIN

Subset of variables from the CHAIN project, a longitudinal cohort study of people living with HIV in New York City.
mi.pooled

Modeling Functions for Multiply Imputed Dataset
mi.info.update

function to update mi.info object to use for multiple imputation
mi.continuous

Elementary function: linear regression to impute a continuous variable.
mi.pmm

Elementary function: Predictive Mean Matching for imputation.
mi.completed

Multiply Imputed Dataframes
mi.info

Function to create information matrix for missing data imputation
noise.control

Auxiliary for Adding Priors to Missing Data Imputation
typecast

Variables type
type.models

Functions to identify types of the models of the mi object
random.imp

Random Imputation of Missing Data
mi.count

Elementary function: Bayesian overdispersed poisson regression to impute a count variable.
mi.categorical

Elementary function: multinomial log-linear models to impute a categorical variable.
write.mi

Writes mi impuations to file
mi.polr

Elementary function: multinomial log-linear models to impute a ordered categorical variable.
plot.mi

Diagnostic Plots for multiple imputation object