
Last chance! 50% off unlimited learning
Sale ends in
aidsEst
does an econometric estimation
of the Almost Ideal Demand System (AIDS)aidsEst( priceNames, shareNames, totExpName, data,
method = "LA", priceIndex = "Ls", pxBase = 1,
hom = TRUE, sym = TRUE,
shifterNames = NULL, instNames = NULL,
estMethod = ifelse( is.null( instNames ), "SUR", "3SLS" ),
ILmaxiter = 50, ILtol = 1e-5, alpha0 = 0, restrict.regMat = FALSE, ... )## S3 method for class 'aidsEst':
print( x, ... )
aidsPx
).systemfit
).systemfit
).aidsEst
.aidsEst
are passed to
systemfit
;
additional arguments of print.aidsEst
are currently ignored.aidsEst
containing following objects:systemfit
.aidsEst
.method
can specify two different estimation methods:
The 'Linear Approximate AIDS' (LA) and the 'Iterative Linear Least Squares
Estimator' (IL) proposed by Blundell and Robin (1999).
Argument priceIndex
can specify six different price indices
for the LA-AIDS:
The 'Iterative Linear Least Squares Estimator' (IL) needs starting
values for the (translog) price index.
Starting values are taken from an initial estimation
of the 'Linear Approximate AIDS' (LA) with the price index
specified by argument priceIndex
.
Blundell, R. and J.M. Robin (1999) Estimationin Large and Disaggregated Demand Systems: An Estimator for Conditionally Linear Systems. Journal of Applied Econometrics, 14, p. 209-232.
summary.aidsEst
, aidsElas
,
aidsCalc
.# Using data published in Blanciforti, Green & King (1986)
data( Blanciforti86 )
# Data on food consumption are available only for the first 32 years
Blanciforti86 <- Blanciforti86[ 1:32, ]
## Repeating the demand analysis of Blanciforti, Green & King (1986)
## Note: Blanciforti, Green & King (1986) use scaled data,
## which leads to slightly different results
estResult <- aidsEst( c( "pFood1", "pFood2", "pFood3", "pFood4" ),
c( "wFood1", "wFood2", "wFood3", "wFood4" ), "xFood",
data = Blanciforti86, priceIndex = "SL", maxiter = 100 )
print( estResult )
elas( estResult )
## Estimations with a demand shifter: linear trend
priceNames <- c( "pFood1", "pFood2", "pFood3", "pFood4" )
shareNames <- c( "wFood1", "wFood2", "wFood3", "wFood4" )
Blanciforti86$trend <- c( 0:( nrow( Blanciforti86 ) - 1 ) )
estResult <- aidsEst( priceNames, shareNames, "xFood",
data = Blanciforti86, shifterNames = "trend" )
print( estResult )
# Estimations with two demand shifters: linear + quadratic trend
Blanciforti86$trend2 <- c( 0:( nrow( Blanciforti86 ) - 1 ) )^2
estResult <- aidsEst( priceNames, shareNames, "xFood",
data = Blanciforti86, shifterNames = c( "trend", "trend2" ) )
print( estResult )
Run the code above in your browser using DataLab