aidsEst
does an econometric estimation
of the Almost Ideal Demand System (AIDS)aidsEst( priceNames, shareNames, totExpName, data,
method = "LA", priceIndex = "Ls", pxBase = 1,
hom = TRUE, sym = TRUE,
shifterNames = NULL, instNames = NULL,
estMethod = ifelse( is.null( instNames ), "SUR", "3SLS" ),
ILmaxiter = 50, ILtol = 1e-5, alpha0 = 0, restrict.regMat = FALSE, ... )## S3 method for class 'aidsEst':
print( x, ... )
aidsPx
).systemfit
).systemfit
).aidsEst
.aidsEst
are passed to
systemfit
;
additional arguments of print.aidsEst
are currently ignored.method
can specify two different estimation methods:
The 'Linear Approximate AIDS' (LA) and the 'Iterative Linear Least Squares
Estimator' (IL) proposed by Blundell and Robin (1999).
Argument priceIndex
can specify six different price indices
for the LA-AIDS:
The 'Iterative Linear Least Squares Estimator' (IL) needs starting
values for the (translog) price index.
Starting values are taken from an initial estimation
of the 'Linear Approximate AIDS' (LA) with the price index
specified by argument priceIndex
.
aidsEst
containing following objects:
systemfit
.}
aidsEst
.}
Blundell, R. and J.M. Robin (1999) Estimationin Large and Disaggregated Demand Systems: An Estimator for Conditionally Linear Systems. Journal of Applied Econometrics, 14, p. 209-232.
summary.aidsEst
, aidsElas
,
aidsCalc
.
[object Object]
## Repeating the demand analysis of Blanciforti, Green & King (1986) ## Note: Blanciforti, Green & King (1986) use scaled data, ## which leads to slightly different results estResult <- aidsEst( c( "pFood1", "pFood2", "pFood3", "pFood4" ), c( "wFood1", "wFood2", "wFood3", "wFood4" ), "xFood", data = Blanciforti86, priceIndex = "SL", maxiter = 100 ) print( estResult ) elas( estResult )
## Estimations with a demand shifter: linear trend priceNames <- c( "pFood1", "pFood2", "pFood3", "pFood4" ) shareNames <- c( "wFood1", "wFood2", "wFood3", "wFood4" ) Blanciforti86$trend <- c( 0:( nrow( Blanciforti86 ) - 1 ) ) estResult <- aidsEst( priceNames, shareNames, "xFood", data = Blanciforti86, shifterNames = "trend" ) print( estResult )
# Estimations with two demand shifters: linear + quadratic trend Blanciforti86$trend2 <- c( 0:( nrow( Blanciforti86 ) - 1 ) )^2 estResult <- aidsEst( priceNames, shareNames, "xFood", data = Blanciforti86, shifterNames = c( "trend", "trend2" ) ) print( estResult )